Skip to main content
Article
Retention and Viability Characteristics of Mammalian Cells in an Acoustically Driven Polymer Mesh
Biotechnology Progress
  • Zhaowei Wang, Cleveland State University
  • Paul Grabenstetter, Cleveland State University
  • Donald L. Feke, Case Western Reserve University
  • Joanne M. Belovich, Cleveland State University
Document Type
Article
Publication Date
1-1-2004
Abstract

A processing approach for the collection and retention of mammalian cells within a high porosity polyester mesh having millimeter-sized pores has been studied. Cell retention occurs via energizing the mesh with a low intensity, resonant acoustic field. The resulting acoustic field induces the interaction of cells with elements of the mesh or with each other and effectively prevents the entrainment of cells in the effluent stream. Experiments involving aqueous suspensions of polystyrene particles were used to provide benchmark data on the performance of the acoustic retention cell. Experiments using mouse hybridoma cells showed that retention densities of over 1.5 × 108 cell/mL could be obtained. In addition, the acoustic field was shown to produce a negligible effect on cell viability for short-term exposure.

DOI
10.1021/bp034105s
Version
Postprint
Citation Information
Wang, Z., Grabenstetter, P., Feke, D. L., , & Belovich, J. M. (2004). Retention and Viability Characteristics of Mammalian Cells in an Acoustically Driven Polymer Mesh. Biotechnology Progress, 20(1), 384 - 387. doi:10.1021/bp034105s