Skip to main content
Article
Improved Performance of Hydbrid Photovoltaic-trigeneration Systems Over Photovoltaic-cogen Systems Including Effects of Battery Storage
Deptartment of Materials Science and Engineering Publications
  • Amir H. Nosrat, Queen's University - Kingston, Ontario
  • Lukas G. Swan, Dalhousie University
  • Joshua M. Pearce, Michigan Technological University
Document Type
Article
Publication Date
12-6-2012
Abstract

Recent work has proposed that hybridization of residential-scale cogeneration with roof-mounted solar PV (photovoltaic) arrays can increase the PV penetration level in ideal situations by a factor of five. In regions where there is a significant cooling load PV-cogen hybrid systems could be coupled to an absorption chiller to utilize waste heat from the cogen unit. In order to investigate realistic (non-ideal) loads that such a hybrid system would need to service, a new numerical simulation called PVTOM (PV-trigeneration optimization model) was created and coupled to the results of the established CHREM (Canadian Hybrid Residential End-Use Energy and Emissions Model). In this paper, PVTOM is applied to representative houses in select Canadian regions, which experience cooling loads, to assess the fuel utilization efficiency and reduction in greenhouse gas emissions from hybrid PV-cogen and trigen systems in comparison with conventional systems. Results of the optimization runs are provided and the efficacy of PV-cogen and PV-trigen systems is discussed. Both PV-trigen and PV-cogen systems have demonstrated to be more effective at reducing emissions when compared to the current combination of centralized power plants and household heating technologies in some regions.

Publisher's Statement

© 2012 Elsevier Ltd. Deposited here in compliance with publisher policies. Publisher's version of record: http://dx.doi.org/10.1016/j.energy.2012.11.005

Version
Preprint
Citation Information
A.H. Nosrat, L.G. Swan, J.M. Pearce, Improved Performance of Hybrid Photovoltaic-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://digitalcommons.mtu.edu/materials_fp/39