Skip to main content
Article
The potential of agrivoltaic systems
Renewable and Sustainable Energy Reviews
  • Harshavardhan Dinesh, Michigan Technological University
  • Joshua M. Pearce, Michigan Technological University
Document Type
Article
Publication Date
11-11-2015
Abstract
In order to meet global energy demands with clean renewable energy such as with solar photovoltaic (PV) systems, large surface areas are needed because of the relatively diffuse nature of solar energy. Much of this demand can be matched with aggressive building integrated PV and rooftop PV, but the remainder can be met with land-based PV farms. Using large tracts of land for solar farms will increase competition for land resources as food production demand and energy demand are both growing and vie for the limited land resources. This land competition is exacerbated by the increasing population. These coupled land challenges can be ameliorated using the concept of agrivoltaics or co-developing the same area of land for both solar PV power as well as for conventional agriculture. In this paper, the agrivoltaic experiments to date are reviewed and summarized. A coupled simulation model is developed for both PV production (PVSyst) and agricultural production (Simulateur mulTIdisciplinaire les Cultures Standard (STICS) crop model), to gauge the technical potential of scaling agrivoltaic systems. The results showed that the value of solar generated electricity coupled to shade-tolerant crop production created an over 30% increase in economic value from farms deploying agrivoltaic systems instead of conventional agriculture. Utilizing shade tolerant crops enables crop yield losses to be minimized and thus maintain crop price stability. In addition, this dual use of agricultural land can have a significant effect on national PV production. The results showed an increase in PV power between over 40 and 70 GW if lettuce cultivation alone is converted to agrivoltaic systems in the U.S. It is clear, further work is warranted in this area and that the outputs for different crops and geographic areas should be explored to ascertain the potential of agrivoltaic farming throughout the globe.
Publisher's Statement

© 2015 Elsevier Ltd. Publisher's version of record:https://dx.doi.org/10.1016/j.rser.2015.10.024

Citation Information
Harshavardhan Dinesh and Joshua M. Pearce. "The potential of agrivoltaic systems" Renewable and Sustainable Energy Reviews Vol. 54 (2015) p. 299 - 308
Available at: http://works.bepress.com/jmpearce/153/