Skip to main content
Controlling optical absorption in metamaterial absorbers for plasmonic solar cells
SPIE Proceedings
  • Wyatt Adams, Michigan Technological University
  • Ankit Vora, Michigan Technological University
  • Jephias Gwamuri, Michigan Technological University
  • Joshua M. Pearce, Michigan Technological University
  • Durdo O. Guney, Michigan Technological University
Document Type
Conference Paper/Presentation
Publication Date
Metals in the plasmonic metamaterial absorbers for photovoltaics constitute undesired resistive heating. However, tailoring the geometric skin depth of metals can minimize resistive losses while maximizing the optical absorbance in the active semiconductors of the photovoltaic device. Considering experimental permittivity data for InxGa1-xN, absorbance in the semiconductor layers of the photovoltaic device can reach above 90%. The results here also provides guidance to compare the performance of different semiconductor materials. This skin depth engineering approach can also be applied to other optoelectronic devices, where optimizing the device performance demands minimizing resistive losses and power consumption, such as photodetectors, laser diodes, and light emitting diodes.
Publisher's Statement

© SPIE. Publisher's version of record:

Citation Information
Wyatt Adams, Ankit Vora, Jephias Gwamuri, Joshua M. Pearce, et al.. "Controlling optical absorption in metamaterial absorbers for plasmonic solar cells" SPIE Proceedings Vol. 9546 (2015)
Available at: