Skip to main content
Article
Analysis on the Strip-Based Projection Model for Discrete Tomography
Discrete Applied Mathematics (2008)
  • Jiehua Zhu
  • Xiezhang Li, Georgia Southern University
  • Y. Ye
  • Ge Wang, Georgia Southern University
Abstract
Discrete tomography deals with image reconstruction of an object with finitely many gray levels (such as two). Different approaches are used to model the raw detector reading. The most popular models are line projection with a lattice of points and strip projection with a lattice of pixels/cells. The line-based projection model fits some applications but involves a major approximation since the x-ray beams of finite widths are simplified as line integrals. The strip-based projection model formulates projection equations according to the fractional areas of the intersection of each strip-shaped beam and the rectangular grid of an image to be reconstructed, so is more realistic in some applications. In this paper, we characterize the strip-based projection model and establish an equivalence between the system matrices generated by the strip-based and line-based projection models.
Keywords
  • Discrete tomography (DT),
  • Strip-based projection,
  • Linear dependency
Disciplines
Publication Date
January 1, 2008
Citation Information
Jiehua Zhu, Xiezhang Li, Y. Ye, and Ge Wang. "Analysis on the Strip-Based Projection Model for Discrete Tomography" Discrete Applied Mathematics 156.12 (2008): 2359-2367.
doi:10.1016/j.dam.2007.10.011
Available at: http://works.bepress.com/jiehua_zhu/6