Skip to main content
Article
Advances in Fiber-Optic Extrinsic Fabry-Perot Interferometric Physical and Mechanical Sensors: A Review
IEEE Sensors Journal
  • Chen Zhu
  • Hongkun Zheng
  • Lingmei Ma
  • Zheyi Yao
  • Bo Liu
  • Jie Huang, Missouri University of Science and Technology
  • Yunjiang Rao
Abstract

Fabry-Perot Interferometers Have Found a Multitude of Scientific and Industrial Applications Ranging from Gravitational Wave Detection, High-Resolution Spectroscopy, and Optical Filters to Quantum Optomechanics. Integrated with Optical Fiber Waveguide Technology, the Fiber-Optic Fabry-Perot Interferometers Have Emerged as a Unique Candidate for High-Sensitivity Sensing and Have Undergone Tremendous Growth and Advancement in the Past Two Decades with their Successful Applications in an Expansive Range of Fields. the Extrinsic Cavity-Based Devices, I.e., the Fiber-Optic Extrinsic Fabry-Perot Interferometers (EFPIs), Enable Great Flexibility in the Design of the Sensitive Fabry-Perot Cavity Combined with State-Of-The-Art Micromachining and Conventional Mechanical Fabrication, Leading to the Development of a Diverse Array of EFPI Sensors Targeting at Different Physical Quantities. Here, We Summarize the Recent Progress of Fiber-Optic EFPI Sensors, Providing an overview of Different Physical and Mechanical Sensors based on the Fabry-Perot Interferometer Principle, with a Special Focus on Displacement-Related Quantities, Such as Strain, Force, Tilt, Vibration and Acceleration, Pressure, and Acoustic. the Working Principle and Signal Demodulation Methods Are Shown in Brief. Perspectives on Further Advancement of EFPI Sensing Technologies Are Also Discussed.

Department(s)
Electrical and Computer Engineering
Keywords and Phrases
  • Extrinsic Fabry-Perot Interferometer,
  • Fabry-Perot Interferometer,
  • Fiber-Optic Sensor,
  • Interferometer,
  • Physical and Mechanical Sensor
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
1-1-2023
Publication Date
01 Jan 2023
Citation Information
Chen Zhu, Hongkun Zheng, Lingmei Ma, Zheyi Yao, et al.. "Advances in Fiber-Optic Extrinsic Fabry-Perot Interferometric Physical and Mechanical Sensors: A Review" IEEE Sensors Journal (2023) ISSN: 1558-1748; 1530-437X
Available at: http://works.bepress.com/jie-huang/227/