PAG 2017 poster _Jibin Zhang.pdf

Jibin Zhang, Iowa State University
Michael G. Kaiser, Iowa State University
Melissa S. Herrmann, Iowa State University
Rodrigo A Gallardo, University of California, Davis
David A Bunn, University of California, Davis, et al.
Transcriptome Analysis Reveals Distinct Immune Responses to Newcastle Disease Virus in Spleen Between Resistant and Susceptible Chicken Lines

Jibin Zhang¹, Michael G. Kaiser¹, Melissa S. Herrmann¹, Rodrigo A. Gallardo², David A. Bunn³, Terra R. Kelly², Jack C. M. Dekkers¹, Huajun Zhou¹, Susan J. Lamont¹

¹ Department of Animal Science, Iowa State University, Ames, IA 50011 ² School of Veterinary Medicine, University of California, Davis, CA 95616 ³ Department of Animal Science, University of California, Davis, CA 95616

Introduction

- As a major infectious disease in poultry, Newcastle disease has caused:
 I. Considerable economic loss in poultry industry worldwide
 II. Serious problem in some rural areas where chickens are a significant source of income and nutrition
- Vaccination is an important strategy to prevent the disease but is not always executable or effective due to:
 I. Lack of cold chain and proper management in rural communities in African and Asia
 II. Evolution and diversity of Newcastle disease virus (NDV)
- Selection and breeding provides a promising approach to enhance resistance to the disease so that
 I. Global poultry industry productivity will be increased
 II. Poverty and food insecurity in developing countries will be alleviated
- Two objectives of this study:
 I. Identify genes and pathways regulating host response to NDV
 II. Identify genes and pathways related to distinct genetic resistance between the two inbred chicken lines

Methods

- Hatch
- Leghorn
- Susceptible model
- Phosphate-buffered saline
- (N=3-4/group)
- Lentogenic
- 23 d
- 2 dpi
- 6 dpi
- RNA isolation
- RNase
- RNAseq library construction
- RNA sequencing in Illumina HiSeq 2500
- Quality control (Fast QC)
- Mapping to galGal4 reference genome (TopHat2)
- Sequence counting (HTseq)
- Differential expression analysis (edgeR)
- Co-expression analysis (WGCNA)
- Validation with Fluidigm Biomark FCM
- Gene ontology enrichment analysis
- Ingenuity pathway analysis (IPA)

Results

- Figure 1. Samples separated well between Fayoumi (FA) and Leghorn (LH), 2 and 6 dpi, and NDV challenged and non-challenged (CT) chickens (except FA 6dpi) in PCA plot.
- Figure 2. Number of differentially expressed genes (DEGs) with false discovery rate (FDR) <0.05 for NDV vs. CT contrast in two chicken lines at two time points.
- Table 1. Four unique DEGs in Fayoumi at 2dpi
- Table 2. Four shared DEGs in all groups
- Table 3. Gene annotation enrichment analysis
- Table 4. Gene ontology enrichment analysis

Conclusion

- Response of gene expression to NDV challenge decreases with time in both chicken lines, but Leghorn has more dynamic response to NDV challenge than Fayoumi at both time points.
- IFN, Mx, CMPK2, and USP18 are commonly upregulated in NDV challenged birds, indicating their universal role in regulating immune response to NDV in chicken spleen.
- PLA2R1, GLUL, GPT2 and CFHR2 are uniquely upregulated in NDV challenged Fayoumi chickens at 2dpi. They may play a key role in enhancing genetic resistance to NDV and therefore be potential targets for breeding of NDV resistant chickens.
- WGCNA co-expression analysis revealed a module positively related to NDV challenge. Gene annotation enrichment analysis with this module suggested enhanced innate immune response against viral infection in chicken spleen in response to NDV.
- IPA predicted increased glutamine synthesis in NDV challenged Fayoumi but increase cell apoptosis in NDV challenged Leghorn chickens at 2dpi, providing a clue for distinct resistance to NDV in the two inbred lines.

Acknowledgements

We appreciate the support of feed and forage Innovation Lab for Genomics to Improve Poultry Production in United States Agency for International Development Hatch project number #5357.

References

Authors: Jibin Zhang, Michael G. Kaiser, Melissa S. Herrmann, Rodrigo A. Gallardo, David A. Bunn, Terra R. Kelly, Jack C. M. Dekkers, Huajun Zhou, Susan J. Lamont.