
A Framework for the Efficient Production of Web Applications

Jia Zhang Ugo Buy

infiNET Solutions Computer Science Department

 1425 E. Busch Parkway University of Illinois at Chicago

 Buffalo Grove, IL 60089, USA Chicago, IL 60607

Abstract

To date developers can exploit a wealth of existing

languages and tools when designing and implementing

web applications; however, comprehensive and

automated tools and techniques for producing these

applications are still conspicuously lacking. Here we

describe a framework for efficient production of web

applications, which synergistically integrates techniques

for automatic code generation with some of the most

recent technologies for web development, such as the

J2EE application server and XML. We also describe a

general-purpose architecture for web applications and

our Mockup-Driven Fast-prototyping Methodology

(MODFM), which is based on well-tried techniques, such

as rapid prototyping and mockup-driven software design.

Finally, we discuss an example of a web application

developed with our methodology, a comprehensive

university administration system that was recently

deployed at a research university. Our initial experience

with this system indicates that MODFM and related tools

can provide dramatic improvements in developer

productivity, while also enhancing the reliability of the

resulting applications.

1. Introduction

Embracing both computing and networking

technologies, web application development can be quite

complex, costly and time-consuming, if not supported by

a practical methodology [Fraternali00]. To date

developers can exploit a wealth of existing languages and

standards when designing and implementing web

applications. By providing full support for Enterprise

JavaBean (EJB) components, Java Servlet API,

JavaServer Pages (JSP) and XML technology, the Java 2

platform, Enterprise Edition (J2EE) defines a de facto

standard for developing multi-tier interactive web

applications [J2ee]. Keeping developers from the tedious

coding of system level utilities [Grundy02], an

application server is the middle tier of enterprise software

linking the back-end systems and databases at one end

with the graphical user interface at the opposite end;

therefore it is the basis of a typical web application. Most

commercial application servers available today are based

on the J2EE platform, including Weblogic [Bea],

Websphere [Websphere], and JRun [Jrun]. The

eXtensible Markup Language (XML) is considered a

universal format for structured documents and data

definitions on the web [McLaughlin]. Together with the

Hyper-Text Transfer Protocol (HTTP), the Hyper-Text

Markup Language (HTML) and various scripting

languages (e.g., JavaScript), J2EE and XML have enabled

the explosion in the number of web applications that we

have witnessed to date. However, tools and techniques for

developing and connecting the main components of a web

application (e.g., interfaces, application logic, and back-

end databases) are lacking. As a result, developers often

resort to ad-hoc strategies for integrating the various tiers.

In all but exceptional cases, developers must design and

code web applications from scratch, which wastes

valuable human resources and may result in schedule

delays.

Here we define a framework for efficient production

of web applications. Our framework has several goals.

First, we seek to expedite the development of web

applications by exploiting automatic program generation

techniques. Second, our framework supports the inclusion

of customer feedback early in the development process.

Finally, we seek to facilitate software maintenance. We

accomplish our goals in several ways. First, we define a

software architecture suitable for a broad variety of web

applications. This architecture seamlessly integrates

cutting-edge technologies for web development, such as

J2EE and XML, with established development

methodologies, including rapid prototyping and automatic

code generation. Second, we propose a Mockup-Driven

Fast-prototyping Methodology (MODFM) for developing

all the components typical of web applications. Utilizing

well-tried concepts, such as client-centric development

[Sommerville] and rapid prototyping [Szekely], MODFM

seeks to gain customer feedback at early stages of

development in order to avoid wasting development

efforts because of incorrect or incomplete specifications.

In particular, MODFM leads to the production of a

skeleton system (i.e., the mockup) that contains the

interface, but not the full functionality, of the finished

application. Finally, the use of automatic code generation

can provide dramatic improvements in development

speed. We developed a university administration

information system using MODFM. Our empirical

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

experience shows that MODFM and automatic code

generation can provide dramatic improvements to

software productivity.

The rest of this paper is organized as follows. In

Section 2, we discuss related work in web development.

In Section 3, we introduce a general-purpose software

architecture for web applications. In Section 4, we

describe our web code generator. In Section 5, we present

our framework for web applications. In Section 6, we

discuss MODFM and the university application example.

Conclusions and future work directions are discussed in

Section 7.

2. Related Work

A lot of research work has been conducted to simplify

and automate the development of web applications.

Among various efforts, HDM [Garzotto93] defines a

popular model derived from the Entity-Relationship

Model [Chen76] for hypermedia application design,

which divides conceptual schema into two categories:

structural and navigational. Autoweb utilizes a variant

notation of HDM called HDM-lite, which adds a

presentation schema to the conceptual design of web

applications. The conceptual schemas are stored along

with the data content in the development database

[Fraternali00]. Jweb provides a design and prototyping

environment that integrates XML technology with HDM

to help design the conceptual schema [Bochicchio00].

RMM is a database-driven methodology for structured

hypermedia design. Its main idea is to provide a visual

representation of the system in order to facilitate design

discussions [Isakowitz95]. RMM defines an iterative

process to refine and transform visual components into

database elements. Gaedke uses WebComposition and the

WebComposition Markup Language (WCML) to present

a systematic approach for code reuse in component-based

web applications [8,9]. IIPS models navigational

structure, compositional structure, and user interface

through ontologies; it also provides tools for code

generation [Lei02]. Struts provides an open source

unified front-end MVC framework [Gamma94] for web

applications [Struts]. The Struts framework has three

main components: a servlet controller that is provided by

Struts itself, JSP pages (the view), and the application's

business logic (the model). The servlet controller

delegates HTTP requests to appropriate handlers

(actions).

All those efforts defined techniques and tools to speed

up design and development of web applications. At this

moment, however, it appears that all existing techniques

address only specific aspects in the development of web

applications. An additional limitation is that those

methods may or may not integrate easily with current web

technologies. Here we seek to provide efficient support

for the end-to-end process of generating and maintaining

whole web applications. In contrast with previous

approaches, we accomplish this objective by providing a

generic framework to support generating a running

mockup application and by using automatic code

generation techniques that exploit state-of-the-art tools

and technologies for web development.

3. Two-tier MVC Architecture for Web

Applications

We propose a two-tier MVC architecture for web

applications that uses the Struts server [Struts] for the

front-end architecture, as shown in Figure 1. A web

application system is divided into a front-end tier and a

back-end tier; each tier is organized according to the

MVC paradigm. We chose this paradigm to decouple the

data model and application logic from the user interfaces.

The front-end tier includes JSP pages, servlets and the

Struts engine, while the back-end tier comprises all EJB

engines and the database. Compared to the usual three-

tier architecture that is quite popular in web applications

[13,24], our front-end tier can be considered as a normal

front-end tier, while our back-end tier contains the normal

middle tier and back-end tier. We choose this architecture

because the most recent middle-tier tools (e.g., EJB)

effectively incorporate the database while hiding the

details of database organization from the front-end tier

[Szekely].

In the front-end tier, we formalize the Struts

framework as follows. Every JSP page represents a view,

together with a form bean holding the contents of the

JSP Page

form bean

Struts
Servlet

Pre-action

Post-action

View Controller Model

Service EJBs

View Controller Model

Database

Frontend

Backend

Figure 1. Two-tier MVC architecture

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

page. A servlet inheriting from the Struts servlet acts as

the controller. Two action classes–a (pre-, post-) action

pair–act as the model. Pre-action prepares the contents for

the JSP view, while post- action gathers user input from

the JSP page and performs some operations (e.g., error

checking, formatting). The advantage of this architecture

is that it captures the essential scheme underlying each

web page. In this manner, the flow between a user and the

system is clear. For the back-end tier, EJB implements the

application model and hides details of database

organization. We construct a service layer to be the

controller, which deals with all application logic. Actions

act as the view component, as well as the model of the

front-end tier. The rationale is that the purpose of the

back-end tier is to provide system state information to the

front end. Thus, we can consider actions as agents

providing different ways to present back-end states to the

front-end tier.

This architecture clearly identifies an object-oriented,

component-layered structure for web applications. In

addition, it leads to an ideal organization of all of the

code packages in a web system. According to this

architecture, any module in a web application can be

realized by the composition of JSP pages, form beans,

pre-actions, post-actions, service methods, EJB

components, and database schemas.

4. Web Code Generator

We designed and implemented a web code generator

called WGenerator. Similar to existing code generators

[5,12,15,16], WGenerator uses predefined templates to

generate various kinds of code units. The following

features characterize WGenerator. First, WGenerator

conforms to the underlying software architecture that we

described in the previous section. Second, based on this

architecture, WGenerator provides a complete set of

templates that can generate a fully functioning running

system. Third, the template system in WGenerator

decouples the data model from configuration information

about a web application. This separation makes it

especially easy to read and modify the generation scripts

when creating a new version of the application. Fourth,

the template system is highly reusable on different web

application servers. Fifth, WGenerator integrates utilizes

state-of-the-art XML technology.

Following the software architecture discussed in

Section 3, our template system comprises 14 templates for

various components of web applications. As illustrated in

Figure 2, this template system provides code templates

from the front-end to the back-end of a web system. JSP

and form bean contain templates for JSP pages and their

associated data models. Pre-action and Post-action

templates define actions to format a web page and to

collect information interactively supplied by page users.

The Java bean template defines the business data object.

We use the entity-bean home interface template, remote

interface template, and implementation template to

generate EJB entity beans. Likewise, the session-bean

home interface template, remote interface template, and

implementation template generate EJB session beans. The

deployment descriptor template generates deployment

descriptor segments for the corresponding entity beans

and session beans. The service layer template generates

service method signatures. The database schema template

generates SQL statements for creating and deleting tables

in the database. Given the large amount of code that we

generate automatically, a developer merely needs to

define the data model and to implement the business logic

in order for the web application to be complete.

Figure 2. WGenerator template system

Form Bean JSP

Pre-action Post-action

Java Bean

Entity

Bean

Home

Interface

Entity

Bean

Remote

Interface

Entity

Bean

Impl.
WGenerator

Template

System
Session

Bean

Home

Interface

Session

Bean

Remote

Interface

Session

Bean

Impl.
The data model should be contained in a list of XML

<WGenerator>

 <OBJ NAME="StudentAddress" TNAME="student_address">

 <ATTR ATNAME="StudentId" ATYPE="String" VALID="YES"/>

 <ATTR ATNAME="Address" ATYPE="String" UNIQ="NO"/>

 <ATTR ATNAME="City" ATYPE="String" UNIQ="NO"/>

 <ATTR ATNAME="State" ATYPE="String" UNIQ="NO"/>

 <ATTR ATNAME="Country" ATYPE="String" UNIQ="NO"/>

 <ATTR ATNAME="ZipCode" ATYPE="String" UNIQ="NO"/>

 </OBJ>

</WGenerator>

Figure 3. A simple example of a data file

Service Layer

Deployment

Descriptor

Database

Schema

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

files. Figure 3 is an example of a data file that defines a

data model of the StudentAddres object. As shown in

Figure 3, for every field of the corresponding data model,

one can define its name and data type. StudentAddress

contains ten fields: student id, address, city, state,

country, and zip code. The Key field is used to store the

primary key internally. Every data file is applied to

template files when generating the corresponding code.

Database

Two-tier
 MVC

Architecture

 Menu
System

Generator

 Web App
 Template

 System

 Web
Code

Generator

Application Server

 Struts

 Framework

 EJB
Technology

 JSP Servlet

One can also define a configuration file to specify

generation criteria to WGenerator in XML format. We

separate the configuration files from the data files in order

to improve the reusability of the data files. Figure 4 is an

example of a configuration file for the corresponding data

model StudentAddress. A configuration file defines the

relationships between template files and data files. This

kind of relationship is a many-to-many relationship. As

shown in Figure 4, the data file StudentAddress will be

used to generate the business object file and entity bean

files, among others. In addition, developers can decide

whether the target file will be completely regenerated, or

partly replaced, by specifying the value of attribute

Change to be All or Part respectively, as the attribute of

every item shown in Figure 4. Since changes of some data

models in the process of design and development are

normally inevitable, and this feature can guarantee the

flexibility of generated code.

Figure 5. Framework for efficient production

5. Software Framework

Based on the two-tier MVC architecture, we

constructed MODFMEnv, a framework to support the

design and prototyping of web applications. The overall

picture of MODFMEnv is shown in Figure 5.

MODFMEnv is built on top of an application server; it

specifically adopts J2EE technology, such as EJB, JSP,

and servlets. Two additional techniques underlying the

framework are Struts and the database. The two-tier

software architecture that we discussed earlier is the

backbone of the framework. Two code generators support

the code generation based on this architecture. A menu

generator automatically builds code for defining

hierarchical menu systems; this component also provides

an easy way to associate web pages with the

corresponding menu items. A specific application-server

oriented template system defines the skeleton of the sets

of files to be generated. Our WGenerator, combined with

this template system, can be used to automatically

generate the whole structure of the system except for

application algorithms. Most of the templates in the

template system can be fully reused if another application

server is adopted; normally only the EJB deployment

descriptor template needs to be replaced according to the

new server. Another important component is our

framework package. This component maintains the

relationships between different web pages throughout the

menu system. The framework package also provides

authentication control, security control, and other utility

functions.

<WGenerator outputDir ="univ" data="studentAddress">

 <CODE NAME="StudentAddress">

 <template name="=OBJ=NAME=Bean.java" change="ALL"/>

 <template name="=OBJ=NAME=EJB.java" change="ALL"/>

 <template name="=OBJ=NAME=EJBHome.java" change="ALL"/>

 <template name="=OBJ=NAME=EJBImpl.java" change="ALL"/>

 <template name="ApplicationResources.properties" change="PART"/>

 </CODE>

</WGenerator>

Figure 4. Example of a configuration file

6. The MODFM Methodology

Underlying our framework is the MOckup-Driven

Fast-prototyping Methodology (MODFM) for the

development of web applications. Our methodology

employs existing and well-tried techniques: Rapid

prototyping, code generation, and mockup-driven

software design. Rapid prototyping assures that

developers acquire critical knowledge required to build a

full system early on. Automatic code generation can

enhance developer productivity, improve software

quality, and shorten the development cycle. Building

mockups as system prototypes has several advantages.

First, mockups help elicit and finalize the system

requirements. Second, clients can view the layout of the

final system at early stages. Third, since a mockup will

become the skeleton of the final, no development work is

wasted. Fourth, mockups can be reused by other similar

applications since they do not involve coding application

logic. Fifth, constructing mockups blends functional

decomposition [Wieringa98] with object-oriented design

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

principles.

The MODFM methodology is summarized in the

seven steps appearing in Figure 6. In the sequel, we

discuss the various steps of MODFM.

Step 1. In this step domain experts and software

designers first specify the requirements and use-case

scenarios of the application. Next, designers use

functional decomposition to divide the system into

modules and sub-modules. Finally, designers organize the

modules into hierarchical menus. When all the menu

definitions are complete, WGenerator automatically

generates Java code that displays the hierarchy of menus.

This preliminary prototype is submitted to the customers

for review and possibly revised.

Step 2. In this step domain experts design web pages

for each menu item identified earlier.

Step 3. In this step designers define the data models

underlying the above web pages. In general, these pages

can provide intuitive guidelines for identifying the data

models. It is natural to use a traditional OO methodology

when defining the data models, because this activity is

similar to identifying real-world entities during class-

oriented decomposition.

Step 4. In this step WGenerator generates the code

associated with each page defined previously. The

following files are generated: JSP pages, form beans, pre-

actions and post-actions, maps in Struts-config.xml, entity

beans, deployment descriptors, session beans, service

methods, and database schemas.

Step 5. In this step, developers associate JSP pages

with the corresponding menu items. This is accomplished

quite simply by registering the pre-actions of the page to

the corresponding menu item in an XML configuration

file. The menu generator and the framework package will

handle the full system configuration. At this point, we can

get a running mockup system, which has all the user

interfaces that will appear in the final system. This

mockup system is used to elicit additional feedback from

the customers.

Step 6. The purpose of this step is to incorporate

customer feedback into the mockup system. To this end,

we repeat steps 3 through 5 above. These iterations can be

done easily, since all of the programs can be regenerated

automatically based on the updated data models contained

in the XML files. 1. Define hierarchical menus.

2. Design web pages for each menu item.

3. Design data model for each page.

4. Call WGenerator to generate mockup system.

5. Map pages with menu items to configure mockup system.

6. Gather user feedback and go back to step 3 for updates.

7. Add business logic to service layer for a running system.

Figure 6. Mockup-driven Fast-prototyping
methodology

Step 7. After the mockup is accepted, developers code

the application logic into the corresponding service

methods. Real programs replace the initial dummy

methods that were automatically generated for the

mockup. Before the development of these programs, the

clients must approve documentation and project solution

packages, in order to ensure the correctness of the

application scenarios to be implemented. After this step is

finished, a complete system will be ready for testing and

deployment.

The first three steps of MODFM require domain

experts to analyze the system requirements and to

decompose an application. Therefore, these steps do not

necessarily involve developers. The fourth step is fully

automated. The fifth step (i.e., mapping pages with menu

items) also requires domain experts or system designers.

The sixth step requires communication between clients

and system designers. Only the seventh step, which

embeds application logic into the system, requires

software programmers.

We utilized MODFM and the MODFMEnv framework

to design and develop an e-University suite, which is a

web application that serving for students, faculty

members, staff members, and administrators for such

services as admissions, student records, registration, and

financial services. After building up the whole system, we

collected statistical data on the final software system by

the measurement of lines of code (LOC). Other than

configuration files, common files that could be reused for

all applications, and JSP files, all of the code can be

organized in packages as shown in Figure 7. Although

WGenerator helps to generate skeletons of JSP pages

from data files, “visual designers” are needed to adjust

the display of the pages. Therefore to simplify our

statistics, we do not consider JSP package. As illustrated

in Figure 7, the files are packages in six directories. All of

the code under three directories is completely generated:

entity bean, bean, forms, and META-INF. For actions

directory, about 59% of the code were generated, and

Directories LOC MANUAL
GENERATE
D

META-INF 17193 0 17193

entity bean 22320 0 22320

session bean 5396 4416 980

bean 14224 0 14224

actions 7916 3255 4661

forms 12695 0 12695

Total 79744 7671 72073

% 9.619533 90.3804675

Figure 7. Statistical data of the e-University

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

41% of the code manage exchanging data information

with back-end system therefore were manually coded on

the basis of generated skeletons. As a result, for

altogether 79,744 lines of code, 9.62% of the final code

was eventually coded by developers, and 90.38% of the

system was automatically generated. Furthermore, it is

easy to be observed that as the scale of the web

application grows, the complexity of data models will

increase dramatically. Accordingly the amount of

automatically generated code in relative directories, as

shown in Figure 7, will also expand spectacularly. Our

initial experience with this system indicates that

WGenrator can provide improvements in development

speed while also enhancing the reliability of the resulting

applications.

7. Assessments, Contributions, and Future Work

Our experience validates the efficiency and

effectiveness of our framework and MODFM in

developing web applications. We used MODFM to

design and develop the e-University system. Originally

the system was planned to require six months with four

developers. Using MODFM, the first author implemented

the system in three months, together with a JSP designer

to define the page displays. Furthermore, because the

system generated is highly reusable, currently we are

ready to modify the system for other universities.

We understand that MODFM requires discipline in

design and development. However, in our experience, the

benefits of MODFM largely justify this additional effort.

MODFM is an architecture-based methodology that leads

developers to construct quickly a prototype of the web

application; the analysis phase and the development phase

are clearly decoupled. The availability of the mockup

system gives customers the opportunity to participate in

the system design at early stages of the development.

WGenerator helps build a running mockup system with

little developer intervention. Furthermore, the mockup

system can be easily regenerated based on user feedback.

All the application logic is reflected in methods in the

service layer. All other layers are automatically generated

from templates and data models. The template system can

also be reused in other web applications by modifying the

data models. Methods in the application logic are likely to

be reused as well. Thus, our framework not only supports

rapid prototyping; it also provides a highly reusable

development environment.

We would like to continue our research work by

constructing an Interactive Development Environment

(IDE) to support MODFM. Currently developers need to

set up data models and configurations as a set of XML

files. An IDE can automatically support the definition and

maintenance of these files.

8. References

[Bochicchio00] M. Bochicchio and R. Palano,

“Prototyping Web Applications”, Proceedings of the

2000 ACM Symposium on Applied Computing, 2000,

Como, Italy, pp. 978-983.

[Chen76] P.P.Chen, “The Entity-Relationship Model:

Toward a Unified View of Data”, ACM TODS, 1, 1,

1976, pp. 9-36.

[Ejbgen]

http://www.beust.com/cedric/ejbgen/#introduction.

[Fraternali00] P. Fraternali and P. Paolini, “Model-driven

Development of Web Applications: the AutoWeb

System”, ACM Transactions on Information Systems

(TOIS), Vol. 18, Issue 4, Oct. 2000, pp. 323-382.

[Gamma94] E. Gamma, R. Helm, R. Johnson, and J.

Vlissides, Design Patterns, Addison Wesley 1994.

[Garzotto93] F. Garzotto, P. Paolini, and D. Schwabe,

“HDM – A Model Based Approach to Hypermedia

Application Design”, ACM Transactions on Information

Systems, 11, 1, Jan. 1993, pp. 1-26.

[Grundy02] J. Grundy, S. Newby, T. Whitmore, and P.

Grundeman, "Extending a Persistent Object Framework

to Enhance Enterprise Application Server Performance",

Proceedings of the 13th Australasian Conference on

Database Technologies, 2002, Melbourne, Victoria,

Australia, pp. 57-64.

[Isakowitz95] T. Isakowitz, A. Stohr, and E.

Balasubramanian, “RMM: A Methodology for Structured

Hypermedia Design”, Comm. ACM, 38, 8, Aug. 1995, pp.

34-44.

[Jrun] http://www.macromedia.com/software/jrun.

[J2ee] http://java.sun.com/j2ee.

[Lei02] Y. Lei, E. Motta, and J. Domingue, “IIPS: An

Intelligent Information Presentation System”,

Proceedings of the 7th International Conference on

Intelligent User Interfaces”, 2002, San Francisco, CA,

USA, pp. 200-201.

[McLaughlin] .B. McLaughlin and M. Loukides, Java

and XML, O’Reilly Java Tools.

[Sommerville] I. Sommerville, Software Engineering,

Addison-Wesley Pub Co, 6th edition.

[Struts] http://jakarta.apache.org/Struts.

[Szekely] P. Szekely, User Interface Prototyping: Tools

and Techniques, 1994, USC/Information Sciences

Institute.

[Bea] http://e-docs.bea.com/.

[Websphere]

http://www3.ibm.com/software/webservers/sppserv.

[Wieringa98] R. Wieringa, “A Survey of Structured and

Object-Oriented Specification Methods and Techniques”,

ACM Computing Surveys, Dec. 1998, pp. 459-527.

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

