
Open Framework Supporting Multimedia Web Services

Jia Zhang Jen-Yao Chung

 Computer Science Department IBM T.J. Watson Research

 Northern Illinois University

 DeKalb, IL 60115 Yorktown Heights, New York 10598

 jiazhang@cs.niu.edu jychung@us.ibm.com

Abstract

With the rapid emergence of web services, more and

more web services are published on the Internet as

resources for web application development. There may

exist some relationships among different web services,

such as exact match, plug-in match, and irrelevant. In

this paper, we discuss the issues related to multimedia

web services, and propose a three-tier framework in

order to establish an open environment supporting

multimedia web services. With the description of the

architecture and its implementation, we can make a

multimedia web services oriented system more

transparent, interoperable, and fault-tolerate.

1. Introduction

Web services are broadly regarded as self-contained,

self-describing, and modular applications that can be

published, located, and invoked across the Internet [7].

This emerging paradigm opens a new way of web

application design and development to quickly develop

and deploy web applications by integrating other

independently published web services components to

conduct new business transactions. However, since the

web services components are actually integrated at run

time through the Internet, one essential problem arising is

how to guarantee that a web service can be obtained

dynamically with transparency and fault tolerance.

Furthermore, when web services contain multimedia

elements, only the services that satisfy the quality of

service (QoS) at the time should be taken into

consideration.

Roy [10] summarizes a typical architectural model for

web services among three components: service providers,

service brokers, and service requesters. Service providers

publish web services on service brokers; service

requesters demand services from service brokers; and

then service requesters directly bind to particular service

providers. This framework works well at the early stage

of web services realm, as different web services are not

interoperable. As people start to utilize published web

services to construct larger business, problems arise.

Figure 1 illuminates a typical example using this

architecture. Suppose one web application needs to

integrate three published web services, each from a

different service provider 1, 2, 3, respectively. These

three service providers publish their services on the same

service broker. When a service requester obtains the

locations of these three services from the service broker,

it needs to invoke the three web services separately from

different service providers. Therefore, the service

requester needs to be aware of the detailed access

information of each service provider, such as the location,

and even port number of the desired service. When an

unexpected accident occurs on the web, say, service

provider 1 crashes. The service requester has to reaccess

the service broker for a substitute, and reestablish the

connection to the new service provider. As a result, the

service requester has to end up handling invocation and

error handling of every web services needed, which is

obviously neither efficient nor effective.

Therefore, our goal in this research aims at

establishing an open framework in order to support

multimedia web services. The rest of the paper is

organized as follows. In Section 2 we present the

requirements of supporting multimedia web services and

mechanisms needed. In Section 3 we discuss the related

work. In Section 4 we define some basic concepts. In

Section 5 we propose a three-tier framework supporting

multimedia web services. In Section 6 we depict the

Figure 1. More sophisticated situation

Service

Provider 1

Service

Broker

Service

Requester

Service

Provider 2

Service

Provider n

demand

bind

publish

Table 1. Requirements and mechanisms

Requirements Mechanisms

transparency of locating and invoking web services encapsulation of the details of location and invocation

management of relationships between web services definition of the service relationships

dynamic selection and composition of web services dynamic selection and dynamic binding

QoS awareness support of the expression of QoS parameters

fault tolerance dynamic selection and dynamic binding

distribution of web service registration trading between service brokers, caching

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

prototype implementation of the framework. In Section 7

we present our evaluation. In Section 8 we draw a

conclusion and discuss future work.

2. Problem Domain Definition

As the first step of the design process, we identify the

requirements in order to support web services. We believe

that there are six essential requirements: transparency,

management of service relationships, dynamic selection

and composition, quality of service, fault tolerance, and

distribution of web services registration. Table 1

summarizes these requirements and the mechanisms that

we believe to be capable of fulfilling each requirement.

For brevity, in this paper we omit the discussion for other

possible requirements, such as resource localization,

multicast support, support for continuous media, real time

synchronization, security, latency tolerance, etc.

The first is the transparency of locating and invoking

web services. Similar to network transparency [9], web

services transparency means that web services behave in

the same way independent of their distributed locations

and execution environments. To achieve the transparency,

a mechanism needs to be provided to encapsulate the

details of location and invocation of web services.

The second is the management of relationships

between published web services. A large amount of web

services have already been published on the Internet, and

the number and types of web services grow rapidly [4].

How to select an appropriate web service, and how to

select a substitute when one web service is unavailable,

are of paramount importance. Therefore, mechanism

needs to be provided to define the relationships between

web services, such as exact matching, substitutable

matching, etc.

The third is the dynamic selection and composition of

web services into a new business transaction. Due to the

unpredictable feature of Internet, some pre-selected web

services may be temporarily unavailable at some time;

therefore other compatible web services should be

selected as replacements. As a result, applications based

on web services should be able to choose and compose

the web services to be used at run time. Furthermore,

since web services will be dynamically selected, static

binding at compiling time and linking time is not

practical. Therefore, dynamic binding needs to be

supported.

The fourth is the quality of service (QoS) awareness.

More and more web services contain multimedia elements

that require timeliness of transmissions [6]. In addition, a

web service may become overloaded at some point and

stop responding in a timely fashion, which will violate

QoS requirements. Therefore, the selection of web

services should not only be based upon availability, but

also on QoS characteristics. In order to select the web

service that fulfills the QoS requirements, mechanisms

need to be provided to support the expression of QoS

parameters, so that web services can be selected based

upon their QoS values if so desired. In this paper we do

not discuss the mechanism to ensure the QoS through the

Internet transmission.

The fifth is fault tolerance. The fault tolerance here

refers to the ability of a web services oriented system to

respond gracefully to an unexpected web services failure.

Considering an application that is composed of several

web services and is executed the second time, from the

first time of execution, the set of web services used will

be cached. Since each web service will be invoked

remotely from its resident site at the time of invocation, it

is possible that one web service crashes without warning

after the first invocation. The system needs to be able to

make some special arrangements to find a new web

service to replace the failed one, so that a service

requester will still obtain the whole application even a

certain web service is crashed. Dynamic selection and

binding of web services can be the mechanism to achieve

this goal.

The sixth is the distribution of web services

registration. As more and more web services are

published on the Internet, it is infeasible to have one

central service broker that handles the entire pool of

published web services. As a result, there will be many

service brokers on the web, each managing some web

services. When a web service is requested, the closest

service broker will be first checked. If the expected web

service is not found, the service broker should

automatically contact with other service brokers for the

appropriate service. If the service is found elsewhere, the

original service broker should duplicate the service

information to its local storage for future usages.

Mechanisms should be provided to support the trading

between service brokers described here.

3. Related Work

Remote Procedure Call (RPC) is a powerful

mechanism in distributed computing, which enables

software to make procedure calls over the Internet onto

another procedure running on distributed machines.

XML-RPC [8] utilizes the standard eXensible Markup

Language (XML) [15] encoding strategy so that systems

can be loose coupled and highly interoperable; the issue

of argument marshaling existing with the traditional RPC

is resolved due to the fact that all data is encoded as text

before transmission [1]. Apache XML-RPC [2] is a Java

implementation of XML-RPC. Although XML-RPC is

simple to understand and use, its goal of simplicity

decides that it cannot handle complex data types. Simple

Object Access Protocol (SOAP) [11], on the other hand,

is a more comprehensive and powerful transportation

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

protocol, which can handle complex data types such as

user defined data types, and have the ability to have each

message define its specific processing control and

recipient. Becoming ad-hoc standard of web services

field, the SOAP specification defines a convention to

represent RPC calls and responses. Therefore, SOAP

covers XML-RPC and provides more power of

supporting web services oriented system. As a result, in

our research, we decide to adopt SOAP RPC to access

remote web services. Meanwhile, our previous work

enhances SOAP in order to improve the ability and

flexibility of the ad hoc standard SOAP protocol to serve

for multimedia web services, by supporting batch facility

and carrying on QoS requirements [16]. Consequently,

we utilize our enhanced SOAP to transfer request

messages.

Researchers, especially those from the field of web

services discovery, have been interested on identifying

QoS features as requirements of web services location.

UX [3] suggests three QoS parameters: response time,

cost, and reliability. Vinoski [13] summarizes five QoS

parameters: latency as the average time for an operation

to return the results after its invocation, fees as the money

needed to be paid to invoke operations, availability as the

probability that the web service is present and ready to be

invoked, accessibility as the degree of being capable of

serving a request, and reliability as the degree of being

capable of maintaining the service and service quality. In

our work, we choose to adopt several multimedia-related

QoS parameters: response time, reliability, availability,

and accessibility.

Meanwhile, a powerful language to formally and

precisely define a web service is of paramount

importance. Web service description language (WSDL)

[14] from W3C is becoming the ad hoc standard for web

services publication. However, WSDL can only specify

limited information of a web service as the function

names and limited input and output information [4]. Gao

and colleagues [4] propose a web service capability

description language (SCDL) to describe, advertise,

request, and match web services capabilities precisely.

SCDL defines four types of atomic web service capability

matches: exact match, plug-in match, relaxed match, and

not relevant. The paper provides a theoretical basis to

define web service capability matching. However, the

paper does not provide any information about the

implementation of the SCDL language; its previous

version SDL [5] is still at early development stages [12].

Therefore, the usage of SCDL in web service applications

is still unclear.

4. Basic Definitions

To address the issues discussed above, a three-tier

framework supporting web services is proposed. To

facilitate our discussion of the framework, however, we

need to define some basic concepts first. For brevity, in

this paper, we will use the term web service and service

interchangeably.

Definition 1: Web service

In this paper, each web service is defined as a 6-tuple

(hostId, ontoDes, Sigs, Pre, Post, QoS), where:

• hostId: is the unique identifier of the hosting

server machine of the web service;

• ontoDes: is the ontological description. This

element defines the concept of the context and its

meaning description [4].

• Sigs: is the set of RPC methods exposed by the

service:

 Sigs ::= {M1 V M2, …, V Mi…}, i≥1

 Each RPC method can be defined as follows:

 M ::= (N, i1, i2,… , im, o1, o2,…on) where:

 N: the name of the method;

i1, i2,… , im: the list of the types of the input

parameters;

 o1, o2,…on: the list of the types of output

parameters;

• Pre: is the pre-condition of the web service;

• Post: is the post-condition of the web service;

• QoS: is the QoS feature of the web service.

Definition 2: Signature match

Considering two RPC methods A and B exposed by

web services, method A is regarded as signature matching

to method B if:

1. The input parameters of A are super types of

those of B;

2. The output parameters of A are subtypes of those

of B.

Definition 3: Plug-in match web service

Plug-in match defines a substitute relationship

between web services. If a web service X is a plug-in

match service of web service Y, it means that web service

X can be plugged into the place where web service Y is to

be used as a substitute, but not vice versa. A web service

X is a plug-in match service of web service Y, if:

1. The method set defined by X is a superset of that

defined by Y;

2. For each mutual method between X and Y, the

signature of the method signature of X signature

matches that of Y.

3. The specification of X semantically matches the

specification of Y. In other words, (pre-X =>

pre-Y) ^ (post-Y => post-X) [4].

4. For every QoS requirement defined in Y, X

fulfils the same QoS requirement with super type

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

(i.e. for every QoS specification, X satisfies with

stronger features).

Definition 4: Exact match web service

Exact match web service defines that two web

services are potentially interchangeable. Two web

services, say X and Y, are considered to be exact match if

X is plug-in match with Y and Y is plug-in match with X.

Definition 5: Related web services

Related web services defines that two web services are

either exact match or plug-in match. Otherwise two web

services are considered irrelevant services.

Definition 6: Service domain

A service domain in this paper is a conceptual term for

the purpose of the management of web services. A

service domain is defined based upon the distribution of

web services registration. All service providers who

register on a service broker form a service domain

together with the service broker. As new services register

onto the service broker, or some old services remove

from the service broker, the boundary of the service

domain alters accordingly. Therefore, the concept of a

service domain represents a set of published web services.

5. Three-tier Framework Supporting

Multimedia Web Services

Based upon our previous discussions, in this section,

we present a three-tier framework for web services, which

aims to support the integration of the mechanisms we

propose to fulfill the requirements. As illustrated in

Figure 2, there are three layers in the framework: service

providers, service broker, and service requesters. Multiple

service providers register onto a same service broker; and

multiple service requesters access the same service

broker. Containing still three components in the model,

our framework differs from the traditional one in the

following ways. In the normal architecture, as we

discussed in the first section, when a service requester

asks for a web service, the service broker finds the

expected service and returns the service provider’s

information to the service requester, then the service

requester will connect to the specific service provider for

the service by itself. In our model, on the other hand, the

service broker serves as the middle tier between service

providers and service requesters; and service requesters

will connect to the service providers through the service

broker. In addition, a service broker will not only serve

for service registration and management, but also serve

for dynamic service selection and binding, caching,

service trading, etc.

The service broker is wrapped by an XML layer. This

XML layer can be implemented by different XML-based

technologies, such as SOAP, UDDI, and WSDL. This

paper will not discuss the related technologies. Therefore,

we use XML layer merely represents that the

communication between the service broker and the

service providers and service requesters are all based on

XML technology. The internal structure of a service

broker contains the following five functional components:

service registrar, service manager, service binder, service

trader, and service analyzer.

Service registrar handles service registration for

service providers and the service trader component.

Service providers register new web services onto the

service broker, or remove old services from it.

Commonly, the service registrar normally maintains one

repository of registered web services, and also provides

an operation engine over the repository, e.g.

adding/removing a service entry, and query functionality

for service binder, which will be discussed below.

Through the service registrar, the details of web services

are encapsulated from service requesters. The service

trader component can also register web services into the

service registrar - the scenario will be discussed later.

Service manager is meant to manage the registered

web services in order to realize the dynamic selection and

binding of QoS-aware web services with transparency

and fault tolerance. Managing the relationships between

registered web services, service manager selects an

appropriate service from the service pool at run time,

based on the functionality and QoS requirements. Then

the service binder will try to bind to the selected service

provider. If the chosen service is not available, or cannot

satisfy the QoS requirements at the moment, the service

manager will look into its service pool again for a related

service. If there is no related service available at the time,

the service manager will notify the service requester to try

at later time. The service manager normally maintains one

repository of registered services grouped with

relationships, e.g. exact matching and plug-in matching.

Service binder dedicates to provide dynamic binding

service for service requesters. Either a service requester

or the service manager can invoke the service binder for

service. On receiving requests, the service binder will

query the registered service repository for the proper

binding properties, such as the service host machine

identifier and service name, etc. If the service binder can

not set up the connection, the service binder will notify

the service manager for a substitute web service, and try

to build the connection again.

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Service trader manages the trading facility among

different service domains. A service requester sends a

request to a service broker, maybe because it is a member

of the service broker, or the specific service broker is in

its local area, etc. It is possible that a requested web

service can not be found on one service trader, the service

trader needs to forward the request to other service

brokers, or service domains, for the particular web

service. The QoS requirements associated with the

request should be sent together as well. Therefore, the

service trader needs to maintain a pool of other service

brokers. If a service is found from another service broker,

the original service trader will register the web service

through the service registrar component in the same

service broker. When a service registration is copied over,

the associated popularity, which will be discussed below,

will as well be copied. Therefore this duplicate copy of

the service registration can serve for future requests in the

original service domain. Meanwhile, when a service

trader receives a request from another service broker, it

will check the service manager component for the

requested service.

Service analyzer is a utility component, which

provides statistical analysis on the popularity of registered

web services in a service domain. For example, whenever

a binding between the service binder and a service

provider is successfully set up, the counter associated

with the specific web service will be increased by one.

The higher the counter is, the higher popularity the

service provider will be. The popularity will be one of the

essential criteria for the service manager to select

appropriate web services, when multiple registered web

services provide similar functionality and QoS

parameters.

6. Implementation

We have implemented a prototype system based on

our three-tier framework. Figure 3 illustrates the

architecture of the prototype system. In our system all

service providers expose their web services with RPC

interfaces. Here we will focus on the structure of service

broker. We utilize our enhanced SOAP protocol [16] to

serve for the communication channels between the

service broker and service providers, due to its ability to

transfer QoS parameters and facilitate multimedia

transportation. As we have not discovered an ideal

description language for web services publication, as we

discussed in the previous section, in this prototype system

we implement a registrar component together with

interfaces for service providers to register their web

services with QoS requirements. This is certainly just a

temporary solution, but it can help us prove the concept

of our framework; furthermore this module can be easily

upgraded with a description language integrated in.

Figure 2. Three-tier framework supporting web services

Service

Provider 1

Service

Provider 2

Service

Provider n

Service

Requester 1

Service

Requester 2

Service

Requester n

XML

XML

Service Broker

Service

Manager

Service

Registrar

Service

Binder

Service

Trader

Service

Analyzer

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

In the service broker, we implemented five main

functional modules and three repositories. The five

modules are service registrar, service manager, service

binder, service trader, and service analyzer. The

functionality of each module follows our framework. The

three repositories are: service repository, broker

repository, and historical repository. These repositories

store service information, other service brokers’

information, and historical successful access information,

respectively. Figure 3 also shows the relationships among

them and the access paths among them. Service broker

contains SOAP operator to generate and interpret to and

from SOAP messages. Notice that there are three SOAP

operators in Figure 3. As a matter of fact, there is only

one SOAP operator exists. The reasons to have multiple

SOAP operators are, one just for display purposes for

easier painting, the other one is to emphasize that SOAP

translation or generation are necessary at three places. To

be brief, in the following description, we omit the steps of

translation/generation of SOAP messages, as they are

always necessary when the service broker communicate

externally.

Service providers publish their services to the service

broker through the service registrar module. The

registration information follows our definition of a web

service in previous section, which includes functionality,

host machine identifier, QoS parameters, etc. The service

registrar then stores the service information in the service

repository.

When a service requester asks for a specific service,

the request should contain the desired functionality of the

service and QoS requirements. The request will be

forwarded to the service manager, and the latter one

searches the service repository and historical repository

for an appropriate web service registered. Notice here that

the service repository contains different views and

categories based on the matching relationships between

the web services, as we discussed in previous section. In

our prototype system, we provide two options for service

requesters. One is that service requesters give the service

broker full right to automatically decide which web

service to choose. The other one is to let the service

broker provides candidate services, and leave to service

requesters to decide which one will be invoked. To

facilitate our discussion, here we assume to adopt the first

option. The service manager will then coordinate with the

service analyzer to decide the most appropriate web

service. We will also skip here the algorithm to choose a

web service, and simply assume that the service broker

Figure 3. Implementation of three-tier framework

enhanced-SOAP

Service Broker

Service

Manager

Service

Requester 1

Service

Requester 2

Service

Requester n

enhanced-SOAP

Service

Registrar

Service

Binder

Service

Analyzer

Service

Repository

Historical

Data

Service

Trader

Broker

repository

Service

Provider 1

Service

Provider 2

Service

Provider n

with other

service

traders

SOAP Operator

SOAP Operator

SOAP

Operator

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

always selects the most appropriate web service, based on

the QoS requirements and popularity.

If a service is found successfully from the service

repository, the service binder will try to establish the

connection to the host machine containing the chosen

web service. If succeeded, the connection will be passed

back to the service requester, and the service binder will

record the successful access information into the

historical repository. Otherwise, the service manager will

repeat the previous action to search for a replacement,

and the service binder will continue to bind to the new

host machine with the newly selected service. If the

service is not found in the service repository, the request

will be forwarded to the service trader, and the service

trader will in turn search for the broker repository to find

other service domains for the expected service. Service

brokers from different service domains may interact with

each other to share the recorded web services. If one of

the associated service brokers finds the desired service in

its own service domain, the registration information will

be passed back to the original service broker, and the

information will be registered to its service repository

through the service registrar. As a new web service is

registered, the range of the service domain is

correspondingly enlarged.

7. Evaluation

The main evaluation of our work was conducted to

examine the effectiveness of our framework against the

research issues we discussed in the Section 2 problem

domain specification. For each issue, we scrutinize what

solution our framework proposes, which components of

our framework are involved, and check whether the issue

has been fully solved or partially solved. The evaluation

result is summarized in Table 2. For other issues related

to web services, we do not discuss in this paper.

• Transparency of locating and invoking web

services: The service manager, service binder, and service

trader are involved. The service manager selects the

appropriate service; the service binder connects to the

chosen service. If the desired service does not register in

the service domain, the service trader will be involved to

find one in other service domains. Therefore, the detailed

information about the location and the invocation of a

proper service is masked from the service requester. This

issue is solved by our framework.

• Management of relationships: The service manager

is involved. The service manager decides the matching

relationships between registered web services, and groups

them accordingly to provide different views of the service

repository. Consequently the service relationships are

maintained. However, in reality, due to the fact that we

have not found an ideal web service description language

that is powerful enough to describe the characteristics of a

QoS-required web service, this issue will remain partially

solved until we find better solutions.

• Dynamic selection and composition: The service

manager, service binder, and service trader are involved.

The service manager conducts run-time selection of the

appropriate web service based on the availability and

popularity. The service binder helps to guarantee the

availability of the web service. The service trader helps to

locate a service. However, due to the same reason as

above, this issue cannot be fully solved unless a powerful

description language appears. In addition, in this paper

we do not discuss the issue of service composition.

• QoS awareness: The service manager and the

service binder are mainly involved. The service manager

utilizes QoS parameters as a criterion to select services;

and the service binder connects to the host machine of the

service to check whether the QoS parameters remain the

same at the moment. However, due to the same reason as

above, this issue cannot be fully solved unless a powerful

description language appears.

• Fault tolerance: The service manager and the service

Table 2. Requirements solving results

Requirements Components involved Result

transparency of locating and invoking web

services

service manager, service binder, service

trader
solved

management of relationships between published

web services
service manager partly solved

dynamic selection and composition of web

services

service manager, service binder, service

trader
partly solved

QoS awareness service manager, service binder partly solved

fault tolerance service manager, service binder solved

distribution of web service registration service trader solved

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

binder are mainly involved. The service manager and the

service binder cooperate to achieve dynamic service

selection. When a service is not available, the service

manager will research for a substitute. Therefore, this

issue is solved.

• Distribution of web service registration: The service

trader is involved. The service trader facilitates web

services to be registered at different service brokers

locally. At the run-time, service traders can interact with

each other to share the web service registration

information. Therefore, the issue is solved.

Based on our evaluation result, we can see that our

framework to large degree solves several essential issues

related to web services.

8. Conclusions and Future Work

This paper discusses the issues related to web services

oriented environment, and proposes a three-tiered

framework in order to achieve transparent dynamic QoS-

enabled web services with fault tolerance. We also

discuss our implementation of the framework. This

research work leads to establishing an open environment

supporting web services.

Our future work includes the following directions.

First we will explore a web service description language

in order to support our requirements. Second, we will

investigate the notification services between service

domains. Third, we need to examine the effect of the

security issue in our framework.

9. Acknowledgments

We would like to acknowledge our deep appreciation to

Dr. Rodney Angotti for his valuable feedback and proof

reading our manuscript.

10. References

[1] M. Allman, “An Evaluation of XML-RPC”, ACM

SIGMETRICS Performance Evaluation Review, 30(4), Mar.

2003, pp. 2-11.

[2] http://ws.apache.org/xmlrpc.

[3] Z. Chen, L.-T. Chia, B. Silverajan, and B.-S. Lee, “UX – An

Architecture Providing QoS-Aware and Federated Support for

UDDI”, Proceedings of the International Conference on Web

Services (ICWS’03), Las Vegas, NV, USA, Jun. 23-26, 2003,

pp. 171-176.

[4] X. Gao, J. Yang, and M.P. Papazoglou, “The Capability

Matching of Web Services”, Proceedings of the IEEE

International Symposium on Multimedia Software Engineering

(MSE’02), Newport Beach, CA, USA, Dec. 11-13, 2002, pp.

56-63.

[5] W.J. van den Heuvel, J. Yang, and M. Papazoglou, “Service

Representation, Discovery and Composition for E-

marketplaces”, Proceedings of the 6th International Conference

on Cooperative Information Systems (COOPIS’01), Trento,

Italy, Sep. 5-7, 2001, pp.

[6] D.W. Hong and C.S. Hong, "A QoS Management

Framework for Distributed Multimedia Systems", International

Journal of Network Management, 13(2), Mar./Apr. 2003, pp.

115-127.

[7] “IBM Web Services tutorial”, http://www-

106.ibm.com/developerworks/webservices.

[8] S. Laurent, J. Johnston, and E. Dumbill, Programming Web

Services with XML-RPC, O’Reilly, 2001.

[9] D.P. Reed, J.H. Saltzer, and D.D. Clark, “Comment on

Active Networking and End-to-End Arguments”, IEEE

Network, 12(3), May/Jun. 1998, pp. 69-71.

[10] J. Roy and A. Ramanujan, “Understanding Web Services”,

IEEE IT Professional, Nov./Dec. 2001, pp. 69-73.

[11] http://www.w3.org/TR/SOAP.

[12] A. Tsalgatidou and T. Pilioura, “An Overview of Standards

and Related Technology in Web Services”, Distributed and

Parallel Databases, 12, 2002, pp. 135-162.

[13] S. Vinoski, “Service Discovery 101”, IEEE Internet

Computing, 7(1), Jan./Feb. 2003.

[14] http://www.w3.org/TR/wsdl.

[15] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maker,

“Extensible Markup Language (XML) 1.0, 2nd Ed. W3C, 2000,

http://www.w3.org/TR/2000/REC-xml-20001006.pdf.

[16] J. Zhang and J.-Y. Chung, “A SOAP-oriented Component-

based Framework Supporting Device-independent Multimedia

Web Services”, Proceedings of IEEE 4th International

Symposium on Multimedia Software Engineering (MSE’02),

Newport Beach, CA, USA, Dec.11-13, 2002, pp. 40-47.

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

