
Fault Injection-based Test Case Generation for

SOA-oriented Software

Jia Zhang, Member, IEEE; Robin G. Qiu, Sr. Member, IEEE

Abstract- The concept of Service Oriented Architecture
(SOA) implies a rapid construction of a software system with
components as published Web services. How to effectively
and efficiently test and assess available Web services with
similar functionalities published by different service
providers remains a challenge. In this paper, we present a
step-by-step fault injection-based automatic test case
generation approach. Preliminary test results are also
reported.

Index Terms- Boundary value, fault injection, test case
generation, Web services.

I. INTRODUCTION

The concept of Service Oriented Architecture (SOA) has
been widely acknowledged to be the strategic model for

the next generation of Internet computing [1, 2]. SOA
enables rapid development of new business software by
integrating components of published Web services, which are
self-contained software components universally accessible
through standard Internet protocols. The Web services
technology enables cross-language and cross-platform
interoperability for distributed computing and resource
sharing. Thus, it facilitates Business-to-Business (B2B)
e-Commerce within and across organizational boundaries, by
means of business organizations enabling universal Internet
access to their software services through standard
programmatic interfaces [3].
The backbone of the Web services paradigm encompasses

three fundamental techniques: communication protocols,
service descriptions, and service registration and discovery
[4, 5]. Each category is represented by an ad hoc industrial
standard. The Simple Object Access Protocol (SOAP) [6]
acts as a lightweight protocol for exchanging structured and
typed information between Web services; the Web Service
Description Language (WSDL) is an eXtensible Markup
Language (XML)-based description language to describe the
programmatic interfaces of Web services [7]; and the

Jia Zhang is with Northern Illinois University, DeKalb, IL 60173 USA.
She is also a Guest Scientist at National Institute of Standards and
Technology (e-mail: jiazhang@cs.niu.edu).

Robin G. Qiu is with the Pennsylvania State University, Malvern, PA
19355. The work was partially supported by NSF grant (DMI-0620340).

Universal Description, Discovery, and Integration (UDDI)
standard [8] provides a mechanism to publish, register, and
locate Web services.

This SOAP+WSDL+UDDI technology stack enables the
publication, discovery, and transportation of a specific Web
service. However, as the paradigm of SOA and Web services
changes the face of the Internet from a repository of data into
a repository of services [9], a UDDI query may return a long
list of available Web services with similar functionalities
declared. How to effectively and efficiently test, assess, and
select a qualified Web service that matches some predefined
requirements becomes critical [9]. Moreover, an
SOA-oriented software system may require multiple Web
services as components. How to select a Web service that can
coexist with other components further complicates the
challenge.

The last fifty years of software development has witnessed
the establishment of a research branch software testing,
which contains a wealth of theories, technologies,
methodologies, and tools to guide the verification process of
a software product against a list of attributes, such as
reliability, scalability, efficiency, security, reusability,
adaptability, interoperability, maintainability, availability,
portability, etc. However, Web services pose new challenges
to software testing due to their unique features. Web services
are hosted by their corresponding service providers and can
only be accessed through published Web interfaces described
in WSDL documents. In addition, their distinctive features of
dynamic discovery and invocation require efficient testing
and assessment of Web services components at run time.

In this research, we aim to explore effective and efficient
techniques of automatic Web services test case generation to
verify Web services-oriented systems. By "Web
services-oriented system," we mean a software system that
consists of one or more components that will be fulfilled by
Web services. As the first step, we focus on reliability testing,
which verifies the "probability of failure-free operation of a
computer program for a specified time in a specified
environment" [10]. Our essential idea is to automatically
elicit boundary value-based test cases from WSDL
documents. The concept of fault injection is exploited to
guide the test case generation.
The remainder of this paper is organized as follows. In

Section 2, we discuss our boundary values-based Web
services reliability testing approach. In Section 3, we discuss
in detail how to generate test cases. In Section 4, we present

1-4244-0318-9/06/$20.00 C2006 IEEE 1070

our preliminary experiments. In Section 5, we compare our
approach with related works. In Section 6, we make
conclusions and discuss future work.

II. BOUNDARY VALUES-BASED WEB SERVICES TESTING

Our research applies boundary values and faulty data to
test reliability of Web services candidates. To increase
efficiency, our major strategy is to generate test cases to
eliminate Web service candidates, instead of proving
reliability of the candidates. Since it is obviously impractical
to test every piece of datum in the possible input space
outlined by corresponding operational profiles, the question
can be broken down into the following two pieces: (1) How
to decide possible test case space? and (2) How many test
cases are sufficient and necessary to validate the full state of a
remote Web service?

Our proposed solution is to utilize boundary values
together with faulty data perturbed from boundary values to
quickly verify the reliability of a Web service candidate.
Each test case tests a Web service upon a function call whose
signature contains several parameters, each requiring a
specific data type with implicit boundary constraints. Our
approach focuses on finding out the boundary values for each
input parameter' s data type. Let us examine a simple
example: suppose that a Web service exposes a WSDL
interface that includes a string-type parameter defined as
follows:

<part name="firstName" type="xs:string"/>

For this parameter, we can test on boundary values such
as: null, "" (empty string), short string (i.e., one character
long), very long string (e.g., 100 characters long), string
containing "new line" characters, non-string values (i.e.,
integer 5), etc.

For every WSDL interface exposed by a Web service, we
list boundary values for each input parameter. Then we
assemble all boundary values to obtain a list of test cases. For
example, suppose a Web service interface contains five input
parameters, each one being a string type without further
constraints. As shown above, each parameter can have five
boundary values. By assembling them together, we will get a
list of twenty-five different test cases for the functional call.

These boundary values are definitely within the input
domain. In order to test the fault tolerance of a Web service,
we adopt the concept of fault injection. Injecting faulty data

to verify fault tolerance is not new; traditional software
testing establishes the fault injection technique [11, 12]. Here
we first briefly review the concept of fault injection and then
discuss the technical challenges we are facing in the domain
of Web services. Derived from the technique used in
traditional industry for a long time (e.g., automobile
manufacture), fault injection is a set of techniques that
provide worst-case predictions for how badly a system will
behave in the future [1 1, 12]. More specifically, the Interface
Propagation Analysis (IPA) technique proposed by Voas and
colleagues is an advanced fault injection technique to test
upon black-box-like software systems [13]. We believe that
IPA is a right candidate concept to test the reliability of Web
services due to the following reason: similar to normally
called Commercial-off-the-shelf (COTS) components, users
of Web services have no access to their internal source code.
Users can only access Web services via SOAP request
messages, and get results from Web services via SOAP
response messages [14]. Therefore, Web services can be
considered like black-box systems from users' perspectives.

The IPA technique suggests injecting corrupted data to the
input of a black-box system [11], and monitoring the output
of the system to obtain knowledge of its fault tolerance, as
shown in Figure 1(a). IPA can help us test the vulnerability of
a Web service serving as a component in a software system
with respect to two levels: (1) the Web service in isolation,
and (2) the Web service as a component interoperating with
other parts of a system. As shown in Figure 1(b), the second
level can be considered along with two scenarios: (a) when
the Web service component returns corrupted information or
no information at all, and (b) when the Web service fails to
interoperate with other components of the system. In short,
IPA can be applied to test the degree of how a system can
tolerate a Web service as a component; or in other words,
IPA can help test the interoperability of a Web service in a
system.

However, although the basic concept of IPA seems
appropriate to be applied to test both the fault tolerance and
interoperability of Web services, how to apply the IPA
technique in the domain ofWeb services remains a challenge.
To our best knowledge, there still lacks a systematic
approach to generate test cases to test fault tolerance of Web
services. The core challenge of the IPA technique is how to
create corrupted data for a testing component. Voas and
colleagues propose to perturb the input domain to find
corrupted data [11]. In traditional component-based testing, a

1071

X2~

(a) (b)
Figure 1. Injecting faulty data for interoperability testing

testing component is already deployed in its execution
environment; thus, it is feasible to conduct an arbitrary
amount of testing over the testing component. When we deal
with Web services, on the other hand, we are facing remote
Web components so that network traffic needs to be
considered imperatively, let alone the fact that some Web
services might have access charges associated. Furthermore,
unlike traditional software components, Web services found
from public registries oftentimes reveal limited information
except for their access prototypes defined in WSDL.

Therefore, our strategy of designing faulty data to test the
fault tolerance of a Web service focuses on perturbing the
boundary values for each input parameter' s data type. Let us

examine a simple example: suppose that a Web service
function requires a string-type input parameter with a length
limitation of 8 to 16 characters. Eight and 16 character-long
strings are both boundary values for the input parameter.
Perturbing these two boundary values, we can obtain 7, 9, 15,
and 17 character-long strings, which can be used as faulty
data to test the fault tolerance of the Web service.

In summary, the faulty data should be divided into two sets
with different purposes: (1) to test the Web service in
isolation, as shown in Figure 1(a); and (2) to test the Web
service as a component in the system environment, as shown
in Figure 1(b). In order to test the vulnerability of a Web
service in isolation, we will perturb each boundary value to
generate faulty test cases, and monitor and analyze the
post-condition of the Web service to decide whether the
output events from the Web service is undesirable. It should
be noted that a certain amount of testing should be performed
to achieve a particular level of assurance. On the other hand,
in order to test the interoperability of a Web service in its
latter operating environment, specific operation scenarios
and profiles need to be considered, in addition to our

proposed boundary value perturbing approach. Exploring
generating test cases based upon operation profiles is an area

of future research.

III. DESIGN OF TEST CASES

In this section, we discuss detailed procedures of test case

generation. To be specific, a test case of a Web service is a set
of mappings between input variables and their values. Each
test case can be used to generate a SOAP input message to
test a corresponding Web service.

A. Design ofvalid test casesfor Web services
As we discussed in the previous section, we generate valid

test cases of a Web service by eliciting boundary values from
the Web services interfaces written in WSDL. Here we first
briefly examine the related WSDL specification on Web
services interface definition.
WSDL is "an XML format for describing network services

as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information" [7].
As shown in Figure 2, using the WSDL, a Web service is
defined as a set of ports, each publishing a collection of port
types that bind to network addresses using common binding
mechanisms. Every port type is a published operation that is
accessible through messages. Messages are in turn
categorized into input messages containing incoming data
arguments and output messages containing results. Each
message consists of data elements; and every data element
must belong to a data type, either an XML Schema Definition
(XSD) simple type or an XSD complex type. (Here we omit
the fact that WSDL allows other data type system in addition
to XSD, since XSD is its canonical type system.)

In summary, in order to design test cases for a Web
service, our basis is its WSDL operations, input messages,

and output messages. For simplicity, we do not consider
designing test cases on the binding of the Web service.

Our basic strategy is to design test cases based upon

boundary values of each formal argument of the published
WSDL definition of the Web service. It should be noted that
one major motivation is to enable automatic test case

generation. Therefore, our challenge here turns into how to
find efficient boundary values for each formal argument.
Since each input parameter must be an XML-allowed data

1072

Figure 2. Web service interface definition using WSDL

type, it can be either XML built-in types or user-defined
compound types, as shown in Figure 3. Let us discuss XML
built-in type first.

B. Boundary values for XML built-in primitive type
As shown in Figure 3, XML built-in types include built-in

simple types and built-in complex types. The former can be in
turn divided into built-in primitive types and built-in derived
types. A built-in complex type is defined in terms of built-in
primitive types and built-in derived types by unioning their
value spaces and lexical spaces. Built-in derived types
actually depend on built-in simple types [15]. In other words,
built-in primitive types are base types, and other types can be
derived in terms of primitive types. Thus, we only need to
investigate how to extract boundary values for built-in
primitive types.

As shown in Table I, W3C Specification of the XML
Schema language defines 19 built-in primitive types: string,
decimal, boolean, duration, dataTime, time, date,
gYearMonth, gYear, gMonthDay, gDay, gMonth,
base64Binary, hexBinary, float, double, anyURI, QName,
and NOTATION [15][16]. For each primitive type, W3C
XML specification defines a set of constraining facets. Each
constraining facet restricts an aspect of the value space of a
built-in primitive type (e.g., minimum value, maximum
value, etc). Taking string as an example, it has six
constraining facets: length, minLength, maxLength, pattern,
enumeration, and whiteSpace.

As summarized in Table I, there are altogether twelve
kinds of constraining facets: (1) length: the number of units
of length based upon data types, (2) minLength: the minimum
number of units of length, (3) maxLength: the maximum
number of units of length, (4) pattern: regular expression that
restricts the lexical spaces to literals, (5) enumeration: a set of
values, (6) whiteSpace: space, tab, line feed, and carriage
return, (7) maxlnclusive: inclusive upper bound, (8)
minlnclusive: inclusive lower bound, (9) maxExclusive:
exclusive upper bound, (10) minExclusive: exclusive lower
bound, (1 1) totalDigits: maximum number of digits, and (12)
fractionDigits: maximum number of digits in the fractional

Built-in complex type Built-in simple type

uiJlt-im prnmitie type Built-in denlved type

Figure 3. XML schema data types

part. Detailed information about each constraining facet can
be found in W3C XML Schema [15].
We use these constraining facets as guidelines to identify

boundary values. For example, consider a WSDL input
argument that is an XML data type string with constraining
facet of length: <length value = '6'>. We can identify a
boundary value of a string with a 6-character long length. For
each input parameter, we then search for its constraining
facets. These constraining facets are part of the
corresponding XML schema definition, which can be either
included in the corresponding WSDL definitions, or
referenced by separate XSD files. The keywords for the
twelve constraining facets are utilized to search for the
corresponding specifications. Using the example above, the
keyword "length" can be used to search in the corresponding
XSD specifications for the constraining facet length and its
specified value of 6.

The twelve constraining facets can be divided into five
categories based upon how they can be used to identify
boundary value-based test cases. (1) Four constraining facets
explicitly specify the boundary values to test: maxlnclusive,
minlnclusive, maxExclusive, and minExclusive. (2) One
constraining facet explicitly defines the set of values to test:
enumeration. (3) Five constraining facets define the length of
a test case: length, minLength, maxLength, totalDigits, and
fractionDigits. (4) The WhiteSpace facet guides to generate
test cases on spaces. (5) The Pattern facet guides to generate
test cases based upon specified regular expressions. The first,
second, and fourth categories explicitly define the boundary
values that can be used. The third category specifies the
length of test cases. The fifth category specifies the rules to
validate test cases, which deserve further separate
investigation and will not be discussed in this paper.

Therefore, for each input parameter defined in a WSDL
document, we obtain a set of possible constraining facets
from Table I based upon the XML data type of the parameter.
The keywords of this set of possible constraining facets are
used to search from the corresponding schema definitions for
defined boundary values or rules. Note that the constraining
facets summarized in Table I are possible facets for each data
type. If, for a defined input parameter, there is no value
defined for a possible constraining facet, an implicit
constraint value should be used based upon the
corresponding IEEE standards [15]. For example, consider
an input parameter with typefloat. If there is no value defined
for a possible constraining facet, say maxInclusive, an
implicit value is actually defined. XML schema adopts for
the typefloat the IEEE single-precision 32-bit floating point
type. Thus, the basic value space of a float consists of the
values m x 2Ae, where m is an integer whose absolute value is
less than 2A24, and e is an integer between -149 and 104.
Therefore, an implicit maxInclusive for a typefloat is 2A24 x
2A104 - 1 = 2A128 - 1. Similar rules are applied to other
numeric XML data types, such as double. Similarly, ISO
standards of Gregorian time values should be applied to
time-related data types: duration, dateTime, time, date,
gYearMonth, gYear, gMonthDay, gDay, and gMonth.

1073

TABLE I CONSTRAINING FACETS OF XML BUILT-IN PRIMITIVE TYPES

primitive type, we extract its
comprehensive boundary values from three dimensions: (1)
XML constraining facets, (2) operational profiles, and (3)
semantic meanings. XML constraining facets provide generic
guidelines for us to find boundary values; and the operational
profiles of a Web service will help us find more efficient
boundary values. For example, let us consider a login id field
with type string. From the XML constraining facets of string,
we know that we need to test the length of the string. A
specific operational profile can help us decide to test whether
the string can accept more than 16 characters. In addition,
operational profiles can help decide the boundary values for
patterns testing, as defined by the corresponding XML
constraining facets. Taking the login id field as an example
again, the operational profiles may help to generate boundary
values to test the string such as: whether the field accepts a

string containing only digits, whether the field is case

sensitive, whether the first character can be a digit, etc.
Finally, the semantic meanings of an argument can further

facilitate boundary values elicitation. Taking an input field of
credit card expiration year as an example, it is intuitive for us

to test the following cases: whether the input year is a future
year or a past year, whether the year is too far in the future,
whether the combination of the year and the month represents
a date in the future, whether the month is between I to 12, etc.

Although operational profiles and semantic meanings can

facilitate more accurate and comprehensive boundary value
elicitation, they mainly require manual involvement. On the
other hand, constraining facets-based boundary value
elicitation can mainly be performed through an automatic
process, following the methods we discussed in this section.
Regarding Web services testing, automatic test case

generation is critical due to the unique time and dynamic
feature requirements. In this research, we focus on test case

generation based upon constraining facets-based approach.
Automating test case generation based upon operational
profiles and semantic meanings will be a future research
topic.

C. Boundary valuesfor XML compound type

As shown in Figure 3, based upon the 19 built-in primitive
types, XML schema defines 25 built-in derived data types,
such as normalizedString, token, language, etc [15]. In
addition, complex data types can be composed of primitive
types and derived types. Furthermore, users can define their
own data types. In general, each user-derived data type must
be defined in terms of another data type in one of three ways
[15]: 1) by assigning constraining facets that restrict the value
space of the user-derived data type to a subset of that of its
base type; 2) by creating a list of data types whose value
space consists of finite-length sequences of values of its item
types; or 3) by creating a union data type whose value space
consists of the union of the value space of its member types.
In other words, each compound data type is associated with a

hierarchical tree of how it is composed of simpler data types.
Each leaf element of the tree is an XSD built-in primitive data
type. Therefore, for a compound data type, we can navigate
through its hierarchy tree and design test cases based upon
each leaf element that is an XSD built-in primitive data type.

Figure 4 shows a simplified XSD compound data type
StudentInfo. The personal information of a student contains
four elements: her id as a double type, name as a string type,
contact information as a complex type, and a list of addresses
each as a complex type. Contact information is composed of

1074

length min- max- pattern enume- white max- max- min- min- total fraction
Length Length ration Space Inclusive Exclusive Exclusive Inclusive Digits Digits

tring v v v v v
boolean

decimal \/ ~/ \/ ~//
float / / / / ____
double \/6/ ./ / __.___
duration / / / / _____

dateTime V" X M M M M M
time / / / /

date / / ./ / __.__
gYearMonth / / I I I I I
gYear \/ sz/ szI ///I_
gMonthDay / / / / ____

gMont / ~/ I
z z z

I ____gMonth / / / _______

base64Binar 1 / / / / /

y~~~~~~~~~~~~~~~~~~~~~
QName / / / / / /

ION ~/ s/ s/

For each XML

four elements: a homePhone as a string type, a cellPhone as a
string type, a fax as a string type, and an email as a string
type. Not including the simple data types expanded from the
Address complex data type, there are six leaf elements in this
StudentInfo data type: id, name, homePhone,cellPhone, fax,
and email. Each element belongs to an XSD built-in primitive
data type, either double or string. Then for each element, we
can apply our method of designing boundary values for XSD
built-in primitive data types, as we discussed in the previous
section. Since we prefer to locate errors if there are any, each
test case only focuses on testing one boundary value of one
leaf element, without combining several boundary values of
multiple elements. In other words, we have purposely limited
the boundary values to a single parameter to avoid the
number of combinatorial edge values that could be set at each
SOAP input message from developing too fast.
Accumulating all of these test cases together, we will obtain a
set of test cases targeting testing the overall StudentInfo data
type.

D. The design of test casesforfault tolerance of Web
services
In this section we will discuss how to perturb boundary

values to validate fault tolerance of an individual Web
service. Our approach is again based upon XML schema
constraining facets. In the last section we discussed how to
extract boundary values from the WSDL definition of a Web
service to efficiently test its correctness. These elicited
boundary values can be perturbed to generate faulty data.
Since our boundary values are generated from constraining
facets, it is straightforward to generate faulty data in terms of
constraining facets also. Table II summaries our methods of
creating faulty data based on each constraining facet.

For length, since it defines the exact length of the

<element name="Studentinfo" type="tns:StudentlnfoType"/>
<complexType name="StudentinfoType">
<all>
<element name="id" type="string/>
<element name="name" type="string"/>
<element name="contactinfo" type="Contactinfo"/>
<element name="addresses">

characters/digits to be used in an argument, two test cases are
generated, one with (length+ 1) and one with (length-i). For
minLength, since it defines the minimum length of the digits
to be used in an argument, one test case is generated with a
smaller length of (minLength-1). For maxLength, since it
defines the maximum length of the characters/digits to be
used in an argument, one test case is generated with a larger
length of (maxLength+l). For enumeration, since it defines
explicitly the set of values to be used, we can generate one or
more test cases with values out of the defined set. For
whiteSpace, we can generate test cases with value null, one or
multiple white spaces, or tabs. For maxInclusive, since it
defines the largest value that can be used, one test case can be
generated with a value of (maxlnclusive+ 1). For
maxExclusive, since it defines the largest value that cannot be
used, one test case can be generated with a value of
(maxlnclusive). For minExclusive, since it defines the
smallest value that cannot be used, one test case can be
generated with a value of (minExclusive). For minExclusive,
since it defines the smallest value that can be used, one test
case can be generated with a value of (minlnclusive-1). The
approach to perturb regular expression patterns will not be
discussed in this paper.

Table II summarizes our perturbation algorithm over each
constraining facet. Recall that using the algorithm discussed
in the previous section, a suite of test cases with boundary
values will be generated. For each such test case, we iterate
through each input argument, find out from which
constraining facet it is generated, and perturb the data using
the algorithm defined in Table II. Each perturbation creates a
new test case. A suite of test cases can then be generated by
combining all such test cases.

Studentinfo

</element>
</all>

</complexType>
<complexType name="Contactinfo">
<all>
<element name="homePhone" type="string"/>
<element name="cellPhone" type="string"/>
<element name="fax" type="string"/>
<element name="email" type="string"/>

</all>
</complexType>

id name

homePhone cellPhone

contactinfo addresses

fax

Figure 4. A simple example of XSD complex data type StudentInfo

1075

email

TABLE II PERTURBATION STRATEGY TO GENERATE FAULTY DATA

Constraining facets Perturbationrstirtegy
length + 1/-i
minLength -1
maxLength + 1
patern
enumeration Values outside of the set
WhiteSpace Nul llabs/space/multiPle spaces
maxlnclusive + 1
maxExclusive The value
minExclusive -1
mininIcluive Use the value
totalDigits + 1
fractlonDigits +1

It should be noted that the test cases with faulty data
generated from our strategy obviously do not cover all faulty
data domain. However, it is by no means our objective to test
a Web service with all possible faulty data. Our goal is to find
efficient faulty data to eliminate a Web service candidate.
Our strategy covers faulty data violating constraining facets
that definitely should be tested. In addition, as shown in
Table II, our approach of generating faulty test cases can be
easily automated, which meets the requirements of Web
services testing. Faulty data can be further elicited from
operational profiles and semantic meanings, which will be a
topic of our future research.

IV. EXPERIMENTS

We carried out a series of experiments to verify the
effectiveness and efficiency of our boundary value-based test
case generation algorithm. We built a typical Web
application, which is a student registration and records
system where students can register for courses and retrieve
course grades online.

As shown in Table III, we embedded six types of errors, (1)
computational faults, such as changing a double-type value
into a character-type value, (2) input SOAP processing faults,
such as errors of parsing incoming SOAP messages, (3)
output SOAP processing faults, such as errors of generating
SOAP response messages, (4) data exception handling faults,
such as improper handling over boundary values, (5)
incorrect method calls, such as calling wrong methods, and (6)

other errors, such as random errors. In order to facilitate the
experiments, we carefully implant code to throw meaningful
exceptions if an error is found. For each type, we embedded
three different errors. The total number of seeded errors is 18.
We performed three categories of test case generation

methods: (1) manually and randomly pick up test cases from
the input space, (2) manually go through possible test cases
from input data space, and (3) automatically generate test
cases using our boundary value-based approach. Using our
approach, the number of automatically generated test cases is
200. The results are shown in Figure 5.
We found that random test case selection is the least

robust algorithm to find errors. As the number of test cases
increased, the second exhaustive approach can find more and
more errors. Meanwhile, it should be noted that both the first
and the second algorithms have to go through a manual
process of test case generation. As shown in Figure 5, we
found that our boundary value-based test case generation
approach is efficient in finding most errors. It found 16 out of
18 seeded errors (88.89%). When the number of test cases
increased by randomly picking up more test cases in addition
to automatically generated test cases, no more errors were
found.
We also found that our algorithm is good at finding errors,

such as SOAP processing faults, data exception handling
errors, and incorrect method calls. Two computational errors
were not found from our algorithm. The errors of class
casting of grade from data type double to string were not
found. In other words, it is difficult to test those errors

TABLE 111 DISTRIBUTION OF ERRORS SEEDED INTO THE SERVICES

Erfrr typ Niumbeb of errors
Computational faults 3
Input SOAP Processing flts 3
Output SOAP processing faults 3
DIta exceptioi haidlinig ts 33
Incorrect method calls 3
Other errors 3

1076

Experim ents oftesting algorithm s

Figure 5. Comparison of different test case generation algorithms

depending on computational logic.
In order to further test the efficiency of the three

algorithms, we chose to set up the reliability decision
threshold to zero, which means that all test cases were

conducted. The testing results are similar to that was

described above.
Our preliminary experiments showed that our test case

generation algorithm is effective and efficient.

V. COMPARISON WITH RELATED WORK

Casati et al. suggest that Web service providers define
service quality metrics, which contain non-functional
parameters specifying the cost, duration, and other
characteristics of a service, to help service requestors make
decisions over multiple candidates [17]. However, their work
remains as a high-level abstraction without technical
discussions such as how to construct service quality metrics.

Simulation has been utilized to validate and monitor Web
services composition. Narayanan and Mcllraith translate
DAML-S service descriptions of composite services into a

Petri nets formalism in order to provide decision procedures
for Web services simulation, verification, and composition
[18]. Cardoso and Sheth use simulation to validate Web
services composition based upon a mathematical Quality of
Service (QoS) model that emphasizes timeliness, cost of
service, and reliability [19, 20]. Miller and colleagues focus
on utilizing simulation analysis to monitor Web process

composition [21]. Lerner uses parameterized state machine
to verify process models [22]. Contrasted with their work,
our research focuses on efficiently generating test cases to

assess Web services and concentrating on reliability attribute
only.

Offutt and Xu propose to adopt data perturbation
technique to generate test cases of testing message

communications between pairs of Web services. Data
perturbation includes two approaches: data value
perturbation modifies values according to the data types
specified by Web services; and interaction perturbation tests
RPC communication and data communication [23]. Their
goal is to use mutation analysis to find faults from Web
services. In contrast with their approach, our work aims to
help service requestors automatically create test cases to
select Web services found from public registries. From a

service requestor's perspective, a Web service is a complete
black box with its published WSDL definitions. Therefore,
the basis of our test cases generation is the found WSDL
definition files of the Web services. In addition, their
research uses machine-related boundary values as data
perturbation strategy (e.g., largest number for a double data
type). Our research proposes a much finer-grain strategy to
find boundary values based upon constraining facets and
XML schema-referenced data type standards.

Bai and colleagues also explore how to generate test cases
from WSDL documents [24]. Contrasted with their work
focusing on generating functional test cases with valid data,
our research focuses on efficiently generating reliability test
cases with boundary values and faulty data.

Siblini and Mansour [25] define a set of mutation
operators to guide test case generation for Web services
testing using WSDL. Their major idea is to switch elements

1077

- 12

_ Agorithm2

2

0

_n ..,, ,CD ..C,, ,, CD .,D CD .- CD ,o CD,...n CD......o C

CN Lfo - C) C- CDrLj - (J L) r- CD "J Ll - CD
Cj Cj C-4 cJ cm m m m ':1- '-I- 'i n-

i
g t i in s. .-

of the same type in an input document to simulate faulty data.
However, their work reports at a high level and only
simulates incorrect element orders. Contrasted with their
work, we analyze the boundaries and defined facets of
WSDL documents to elicit faulty data input.

Our previous research [26] explored how to measure
reliability of Web services using the techniques of mobile
agents. This research explores how to generate test cases for
Web services reliability assessment.

VI. CONCLUSIONS

In this paper we proposed a step-by-step boundary
value-based approach to automatically generate valid and
faulty data test cases for Web services reliability assessment.
Our approach is appropriate for testing the reliability of Web
services candidates with limited exposed interfaces. By
perturbing the test data to imitate unusual events, our
approach is capable of testing whether the hosts of Web
services act maliciously or errantly at invocation times.

The generated faulty test cases can also be used to test
other attributes (e.g., interoperability) of a Web service. As
shown in Figure 1(b), in order to test the interoperability of a
Web service (X2), faulty data should be injected into X2, and
then we could monitor the output of X2 and the output of its
successor X3, and so on.
Our future work will focus on exploring test case

generation for testing other attributes ofWeb services such as
availability, interoperability, and security.

REFERENCES

[1] P. Holland, "Building Web Services from Existing Application", eAI
Journal, 2002: pp. 45-47.

[2] M. Stal, "Web Services: Beyond Component-based Computing",
Communications of the ACM, 2002. 45(10): pp. 71-76.

[3] P. Fremantle, S. Weerawarana, and R. Khalaf, "Enterprise Services",
Communications of the ACM, 2002. 45(10): pp. 77-82.

[4] J. Roy and A. Ramanujan, "Understanding Web Services", IEEE IT
Professional, 2001: pp. 69-73.

[5] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, "The
Next Step in Web Services", Communications of the ACM, 2003.
46(10): pp. 29-34.

[6] SOAP, "Simple Object Access Protocol (SOAP) 1.1", World Wide
Web Consortium (W3C), May 2000, h_t:; 3 R

[7] WSDL, "Web Services Description Language", 2004,

[8]

[14] SOAP, "Simple Object Access Protocol (SOAP) 1.2", World Wide
Web Consortium (W3C), May, 2003,

[15] P.V. Biron and A. Malhotra, "W3C Recommendation "XML Schema
Part 2: Datatypes"", 2001,

[16] W.C.D. Types,
[17] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan, "Probabilistic,

Context-sensitive, and Goal-oriented Service Selection", Proceedings
of the 2nd ACM International Conference on Service Oriented
Computing, New York, NY, USA, 2004, pp. 316-321.

[18] S. Narayanan and S.A. Mcllraith, "Simulation, Verification and
Automated Composition of Web Services", Proceedings of the
eleventhACM International Conference on World Wide Web (WVW),
Honolulu, Hawaii, USA, May 7-11, 2002, pp. 77-88.

[19] J. Cardoso and A. Sheth, "Semantic E-Workflow Composition",
Journal ofIntelligent Information Systems, 2003. 21(3): pp. 191-225.

[20] J. Cardoso, A.P. Sheth, J.A. Miller, J. Arnold, and K.J. Kochut,
"Modeling Quality of Service for Workflows and Web Service
Processes", Web Semantics Journal: Science, Services and Agents on
the World Wide Web Journal, 2004. 1(3): pp. 281-308.

[21] J. Miller, J. Cardoso, and G. Silver, "Using Simulation to Facilitate
Effective Workflow Adaptation", Proceedings of 35th Annual
Simulation Symposium, San Diego, CA, USA, 2002, pp. 177-181.

[22] B.S. Lerner, "Verifying Process Models Built Using Parameterized
State Machines", Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, Boston,
MA, USA, 2004, pp. 274-284.

[23] J. Offutt and W. Xu, "Generating Test Cases for Web Services using
Data Perturbation", Proceedings of Workshop on Testing, Analysis
and Verification of Web Services (TAV-WEB), Jul., 2004, pp. 1-10.

[24] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, "WSDL-Based Automatic
Test Case Generation for Web Services Testing", Proceedings of
IEEE International Workshop on Service-Oriented System
Engineering (SOSE), Beijing, China, Oct. 20-21, 2005, pp. 215-220.

[25] R. Siblini and N. Mansour, "Testing Web Services", Proceedings of
The 3rd ACS/IEEE International Conference on Computer Systems
and Applications, Cairo, Egypt, Jan. 3-6, 2005, pp. 135-142.

[26] J. Zhang, L.-J. Zhang, and J.-Y. Chung, "An Approach to Help Select
Trustworthy Web Services", Proceedings of IEEE International
Conference on E-Commerce Technology for Dynamic E-Business
(CEC 2004 East), Beijing, China, Sep. 13-15, 2004, pp. 84-91.

UDDI, "Universal Description, Discovery, and Integration, UDDI
Specification Version 3", 2004,

[9] J. Zhang, "Trustworthy Web Services: Actions for Now", IEEE IT
Professional, 2005: pp. 32-36.

[10] J.D. Musa, A. lannino, and K. Okumoto, Software Reliability
Measurement Prediction Application, 1987: McGraw-Hill.

[11] J. Voas and G. McGraw, Software Fault Injection: Inoculating
Programs Against Errors, 1998: New York: John Wiley & Sons,
ISBN 0-471-18381-4.

[12] J. Voas, "Certifying Off-The-Shelf Software Components", IEEE
Software, 1998: pp. 53-57.

[13] J. Voas, F. Charron, and K. Miller, "Robust Software Interfaces: Can
COTS-based Systems Be Trusted without Them?" Proceedings of the
15th International Conference on Computer Safety, Reliability, and
Security, Springer-Verlag, Oct., 1996.

1078

