
Mockup-driven Fast-prototyping Methodology
for Web Requirements Engineering

Jia Zhang Carl K. Chang Jen-Yao Chung
Chicago Technology Partners Inc. Department of Computer Science IBM T.J. Watson Research

Iowa State University
Chicago, IL 60615 Ames, IA 50011 Yorktown Heights, New York 10598

jiazhangchicago@yahoo.com chang@cs.iastate.edu jychung@us.ibm.com

Abstract

Web application development differs from the
development of traditional software in several significant
ways; therefore requirements engineering for web
applications entails new demands accordingly. This paper
proposes an extreme web requirements engineering -
mockup-driven fast-prototyping methodology to help
elicit and finalize system requirements, as well as
facilitate adjustment to quickly changing user
requirements typical to web applications. Supporting the
inclusion of customer feedback early in the development
process, this strategy minimizes the risk of wasting
valuable development efforts because of ambiguous or
incomplete specifications. Real-life experiences of the use
of the methodology in industry are reported as examples.

1. Introduction

Due to the distinctive features of web application
different from traditional software [3], requirements
engineering (RE) faces challenges in several significant
ways. First is the insufficient requirements specification,
since web application development usually starts from ill-
structured and vague requirements. Second is the gap
between the requirements and the hypermedia design on
web browsers [9]. Third is the complexity management.
Embracing computing and networking technologies, the
development of a web application can be a very complex
and costly task. Fourth is the variety of user groups. Web
applications need to serve for much more inclusive user
base, even for unknown users [3]. Fifth is the traceability.
Web applications constantly change their requirements so
as to meet the volatile demands from the market. Sixth is
the fast release. Web applications usually request short
development cycle in order to sustain the competition
from others. Seventh is the request of integration with the
latest web technology, as it is imperative to evolve quickly
changing technology driven by competition [3]. Some of
these challenges are not unique characteristics exhibited
only by web applications. However, web applications
necessitate all these demands to be fulfilled in one
application; therefore how to effectively and efficiently

elicit and validate frequently changing requirements
starting from an ambiguous goal remains an indispensable
challenge.

Although the last decade has witnessed numerous of
comprehensive notations, models, and methodologies that
have been conducted in RE, little attention has been paid
to the methodologies coping with the requirements
elicitation and finalization of web applications [1]. Our
goal is to synergistically apply well-tried concepts in RE
to web applications, in order to provide an efficient
methodology. In this paper we propose a mockup-driven
fast-prototyping methodology (MODFM) in order to help
elicit and finalize system requirements, as well as
facilitate adjustment to quickly changing user
requirements typical to web applications. Seamlessly
integrating with the most recent web technologies,
MODFM guarantees to deliver running web application
prototypes to incrementally elicit, validate, and finalize
user requirements early and consistently; consequently
reduce the cost of nearly inevitable changes to the
business rules, programming environment, or software
design.

The rest of this paper is organized as follows. In
Section 2, the related work is discussed. In Section 3, we
introduce a web application architecture. In Section 4, we
present web system generator. In Section 5, we propose
our mockup-driven fast-prototyping methodology. In
Section 6, we discuss the experiments. In Section 7, we
make a conclusion.

2. Related Work

There have been a number of researches conducted in
RE. Among the variety of research achievements, four of
the most promising RE approaches can be taken into
account for RE for web applications: the fast-prototyping
technique, structured analysis approach, use case
methodology, and architecture-driven requirements
engineering. Szekely defines the fast-prototyping concept
as constructing a small-scale version of a complicated
system in order to acquire critical knowledge required to
build a full system [10]. This prototype not only provides
to clients a complete picture what the final product will

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

be, but also facilitates requirements validation, elicitation,
and revision. Since its inception in 1970s, structured
analysis has been considered as a powerful and natural
approach to analyze complicated software application
requirements [11]. Use case approach [5], originally
proposed by Jacobson and colleagues, utilizes a scenario-
driven mechanism and has been extensively adopted and
widely considered as the most popular requirements
elicitation technique in industry [6]. Software Architecture
Based Requirements Engineering (SABRE) [2] aims at
bridging between software architecture and RE, which
core concept is that SA helps RE and RE helps firm up SA
as a high-level solution.

These four techniques provide some clear guidelines
and best practices to RE: prototype construction,
functional decomposition, as well as structure-oriented
and scenario-centered requirements elicitation. At this
moment, however, it appears that little attention in these
techniques has been paid to cope with the specific
characteristics of web applications [8]. An additional
limitation is that those methods may or may not integrate
easily with current web technologies. Here we seek to
incorporate these approaches and apply to web
applications in order to provide efficient support for the
end-to-end process of generating and elicitation of web
requirements.

Our work integrates with and builds on top of a variety
of state-of-the-art web technologies. J2EE [7] technology
defines a platform to simplify enterprise development and
deployment; the detailed information can be found from
http://java.sun.com/j2ee. We chose J2EE due to the fact
that it has been extensively considered as the de facto
standard of web engineering [3].

3. Formalized Web Application Architecture

One principle idea of SABRE [2] is to conduct RE in
the frame of appropriate software architecture. To apply
this concept, we first propose a formalized software
architecture for J2EE-oriented web applications. This
architecture is based on our investigation in J2EE-related
technologies, and the first author’s empirical experiences
as an architect designing twelve industrial web
applications in the last three years, ranging from e-
University suite, e-Hospital system, e-Payment system and
web services, to authentication system. As illustrated in
Figure 1, a web application system can be organized as a
collection of modules, running in the environment of
application server [7] with database configured and set up.
Each module can be in turn divided into a list of interacted
mini-modules. As shown in Figure 1, the arrows between
mini-modules exhibit navigational relationship between
them typical of web applications. For example, a user can
navigate to mini-module #2 from mini-module #1. Figure

1 illuminates that each mini-module can be implemented
as a tiny application consists of fourteen components and
exhibits a two-tier MVC [4] model [12]. These
components can be integrated into the front-end tier and
the back-end tier. The front-end tier exhibits a MVC [4]
model: every JSP page represents a view, together with a
form bean contains the contents of the JSP page; a servlet
acts as the controller; and two action classes–a (pre-, post-
) action pair–act as the model. Pre-action prepares the
contents for the JSP view; while post- action gathers user
input from the JSP page and performs some operations.
Capturing the essential scheme underlying of each web
page, this formalization clarifies the navigation flow and
enables automatic code generation that we will discuss in
the later section.

The back-end tier exhibits another MVC model:
service component exposes the back-end to the front-tier;
EJB-related [7] components implement the application

Figure 1. Web system architecture

JSP Form Bean

Servlet

Pre-action Post-action

Service

Entity Bean
Remote Interface

Session Bean
Remote Interface

Session Bean
Impl.

Session Bean
Home Interface

Entity Bean
Home Interface

Entity Bean
Impl.

Deployment Descriptor

Database Schema
one mini-
module

minimodule
1

minimdule
2

minimodule
n

module 1 module 2 module n

Application Server

Database

front-end

back-end

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

model; and the database acts as the data storage. As
shown in Figure 1, a typical EJB-related implementation
consists of seven sub-components: session bean remote
interface, session bean home interface, session
implementation, entity bean remote interface, entity bean
home interface, entity implementation, and deployment
descriptor.

This two-tier MVC architecture clearly identifies an
object-oriented and component-layered structure for web
applications. According to this architecture, any module in
a web application can be realized by the composition of
JSP pages, form beans, pre-actions, post-actions, service
methods, EJB components, and database schemas. As a
result, automatic code generation becomes highly
practical.

4. Web System Generator (WSG)

Our structured architecture makes it reasonable and
feasible to apply automatic code generation for web
application development. Our previous research yields a
J2EE-oriented web system generator (WSG), which
contains two related code generators: web code generator
(WGenerator) and menu system generator (MSG). We
enhance WSG so as to support requirements elicitation.
The detailed information about WSG can be found
elsewhere [12]; here we just summarize WSG and discuss
our enhancement. Based on the sound understanding of

J2EE technology and the author’s ample industrial
experiences, WGenerator provides a complete set of
templates for each of the fourteen components specified in
Figure 1. As a result, one merely needs to provide data
models and some configuration criteria in XML files; and
WGenerator will generate all related code for each model
from front-end to back-end. With WGenerator generating
a running unit piece, menu system generator (MSG) acts
as its complement in order to glue together unit pieces to
become a running system. User defines hierarchical menu
system in a XML file: not only features of each menu
item, but also both navigational relationship and spatial
display relationship between menu items.

We enhanced WSG in order to support requirements
elicitation. Figure 2 illustrates an enhanced data file of a
user’s payment profile of electronic check. After the user
defines his payment profile, he can select to use the
profile to pay his bills without re-typing all related
information. For every item of the corresponding data
model, one can define its name and data type.
ECheckPaymentProfile contains fourteen data items:
holder name, account type, routing number, account
number, email address, day time phone number, evening
phone number, address line 1, address line 2, city, state,
country, and zip code. Key is used to store the primary
key internally. The detailed information about the
specification rules for each item can be found in [12].
Attention should be paid here that we provide the ability
for users to specify comments on data items. As shown in
Figure 2, two data items are associated with comments:
email address and address line 1. Comments of the former
one say that the email address has to be valid email
address; comments of the latter item declare the validation
rules for address.

We as well enhance the JSP page generation
accordingly. If one data item is associated with comments,
a clickable link with word “Comments” will be shown
beside of the data item on the generated page. If user click
on the link, a window will popup displaying the comments
defined in the corresponding data file. Taking Figure 2 as
an example, Figure 3 is its corresponding generated JSP
page. We can see that there are two links beside of email
address and address line 1 respectively; each link is in
blue color. Figure 3 also illuminates that the window
popped up when the link beside of address line 1 is
clicked. This window contains the exact information
defined in Figure 2 as comments of data item address line
1, which is the validation rule for address.

This enhancement facilitates WSG to server for
requirements elicitation. In the process of web
requirements engineering, it is normally sufficient for
business rules to be defined in informal language or even
natural language. This enhancement enables business rules
to be associated with corresponding data items on the web
page, so that not only clients can review the rules, but also

<WGenerator>
<OBJ NAME="ECheckPaymentProfile" TNAME="echeck_profile">

<ATTR ATNAME="Key" ATYPE="String" UNIQ="YES"/>
<ATTR ATNAME="HolderName" ATYPE="String" VALID="YES"/>
<ATTR ATNAME="AccountType" ATYPE="String" VALID="YES"/>
<ATTR ATNAME="RoutingNum" ATYPE="String" VALID="YES"/>
<ATTR ATNAME="AccountNum" ATYPE="String" VALID="YES"/>

<ATTR ATNAME="EmailAdd" ATYPE="String" VALID="YES"
COMMENTS=”Has to be valid email address”/>

<ATTR ATNAME="DayPhone" ATYPE="String" VALID="YES"/>
<ATTR ATNAME="NightPhone" ATYPE="String" VALID="YES"/>
<ATTR ATNAME="AddressLine1" ATYPE="String" UNIQ="NO"

COMMENTS=”1. if the address is a domestic US address:
a) address line 1 should not be empty;
b) address line 2 is optional;
c) city, state, zip code can not be empty;
d) zip code should be format of either "ddddd" or "ddddd-

dddd", while each "d" represents a digit;
2. if the address is a foreigh address:

a) address line 1 should not be empty;
b) address line 2 is optional;
c) city can not be empty;
d) state, zip code are optional;”/>

<ATTR ATNAME="AddressLine2" ATYPE="String" UNIQ="NO"/>
<ATTR ATNAME="City" ATYPE="String" UNIQ="NO"/>

<ATTR ATNAME="State" ATYPE="String" UNIQ="NO"/>
<ATTR ATNAME="Country" ATYPE="String" UNIQ="NO"/>
<ATTR ATNAME="ZipCode" ATYPE="String" UNIQ="NO"/>

</OBJ>
</WGenerator>

Figure 2. data file ECheckPaymentProfile.xml

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

developers can implement these rules and replace the
comments accordingly.

5. Mockup-driven Fast-prototyping
Methodology (MODFM)

On the basis of our formalized web system architecture
and enhanced web system generator, we propose a
mockup-driven fast-prototyping methodology (MODFM)
serving for web requirements engineering. Applying fast-
prototyping concept [10] in web applications, a mockup
refers to a running, navigable, partial or full-sized model
of a web application, used for requirements elicitation,
validation, and finalization. We should notice that
MODFM is applicable to a web application if the

application satisfies the following four assumptions. First,
the application is a typical web application, which is
navigable through a set of web pages. Second, the
application can be decomposed into modules exhibited by
a hierarchical menu system. In other words, all the web
pages can be organized into a menu system. Third, the
project at least starts with a very high-level functional
description of the system. Fourth, the hierarchy of the
menu system is no greater than three. In addition, we
suppose that a test server has already been set up so that
all mockups can be delivered to the test server, while
clients can test the mockups and provide feedback
remotely.

The essential tenet of MODFM is that, always use
running mockup system to elicit and validate user

Mockup-Driven Fast-prototyping Methodology Algorithm

1. Functionally decompose the system into menus.
Every menu item is identified as one web page. It
can be as simple as a “Hello world” page.

2. Generate a mockup containing only menu system
and dummy pages into a released version.

3. Deliver the mockup into test server. Go back to
step 1 if client would like some changes;
otherwise go to step 4.

4. Iterate on every menu item step 4 through 7. If
finished, go to Step 8.

5. Educe scenarios of each menu item page. Identify
a list of pages, gather page information, and
record the business logic between pages.

6. Generate a mockup, with business logic displayed
on every page as written document.

7. Deliver the mockup to client. Go back to step 5 if
client would like some changes; otherwise jump
to step 4.

8. Deliver the mockup to developers.

Figure 3. Generated JSP page for Figure 2

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

requirements. This iterative process applies a top-down
approach to decompose system functionalities to web
pages while simultaneously generating navigable running
mockup system, with functionalities organized by menu
system. The “Mockup-driven Fast-prototyping
Methodology Algorithm” side bar summarizes this
iterative process. A module acts as the container for a list
of web pages that exhibit high cohesion and low external
coupling. In a typical web application, a module is
normally realized by a menu item. Functional
decomposition tasks consist of identifying menu items and
sub-items, and organizing them in a menu system.
Scenario analysis tasks consist of identifying web pages,
finding out the navigational relationship among pages, and
allocating pages to the appropriate menu item. Mockup
construction then occurs bottom up.

5.1. Menu system identification

The first step of MODFM is to functionally decompose
a system into a menu system, where structured analysis
approach [11] is applied. MODFM treats the entire system
as a single abstract module representing the system’s
highest-level functionality. Applying use case
methodology [5], scenario analysis refines system-level
requirements; and helps to identify high-level menu items
within each functional module. One of the projects where
MODFM is actually being utilized for the requirements
analysis is a typical web application - an e-Payment
system. E-Payment system is an on-line payment system
that facilitates users to pay the bill and review bill
presentment from the Internet. Figure 4 illustrates the
original menu system identified. As this example shows,
we identify six menu items at the e-Payment system level:
message board, user preference, payment preference,
electronic bill presentment, electronic bill payment, and
bill history. Secondly, a mockup will be generated
containing only menu system and dummy pages into a
released version. When the mockup is delivered into the
test server in step 3, user feedback can be gathered
quickly. If clients would like some changes, we would go
back to the step 1 to revise the menu system, and
regenerate the mockup. This iteration will repeat until
clients are satisfied with the menu system, and then
procedure will move forward to the next step.

5.2. Iterative requirements elicitation

The following steps are going to be iterated on every
menu item. For each menu item, discussions need to be
conducted with clients in order to find out possible
scenarios. Based on the scenario, a list of pages can be
identified accordingly; and the navigational relationships
between pages can also be identified. Figure 5 is an

example of the pages and their relationships identified for
the module payment preference in Figure 4 above. As
shown in Figure 5, five pages are identified. The entry
point of the payment profile module is the page payment
profile list. Users can click on the list and delete some
profile items if desired. Users can also select one profile
to edit the information. Two pages are provided serving
for the credit card editing and electronic check editing
respectively; and the control will be sent back to the page
of the list of profiles. Users can as well choose to add new
credit card profiles or e-check profiles. Two pages serve
for these purposes respectively; and the control will be
transferred back to the page of the updated list of profile.

For every web page identified, analysts discuss with
users in order to specify a list of data items that the page
will display. Taking e-check payment profile page from
Figure 5 as an example, users are required to provide
fourteen items of information, which can be summarized
by analysts in data file illustrated in Figure 2. We can see
that the business rules are recorded with the page,
associated with corresponding data item. We already gave
an example in the previous section. After data items are
identified for a web page and recorded in data file, we can
invoke our WSG to generate a running mockup, with
business logic displayed on every page as links beside the
corresponding data items and be able to popup in another
window as written document. This mockup can be

Figure 4. e-Payment System Functional Module

e-Payment System

Message Board

User Preference

Payment Preference

Ebill Presentment

Make Payment

Payment History

Figure 5. Web page identified for payment profile

PaymentProfile
List.JSP

EditCreditCard
Profile.jsp

EditECheck
Profile.jsp

AddCreditCard
Profile.jsp

AddECheck
Profile.jsp

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

delivered to clients for feedback. If clients would like
some changes; analysts would change the data file, and
regenerate the mockup, therefore repeating the process;
otherwise one can move on to the next page. After
finishing all pages, the mockup can be delivered to
developers for the business logic development.

6. Experiments

We have tested the MODFM on three industrial web
applications. The first one is an e-Hospital service suite
that allows users to customize a new hospital web site at
the run time, as well as provides to hospitals with web-
based capabilities such as managing accounts,
administrations, notifications, etc. The second one is an e-
University administrative system that support
functionalities such as student records, admissions,
financial aid, financial services, registration, payment
management, faculty, etc. The third one is an e-Payment
system that is an on-line electronic payment system
supporting functionalities such as both e-Check and credit
card payment, bill presentment as both paper bill and PDF
format, bill loading, and payment history presentment, etc.
The detailed case study will be reported elsewhere. We
believe that MODFM possesses great potential in software
industry in web application area. In our experiences,
MODFM promises more direct requirements elicitation
from running mockups, more client satisfaction due to the
fact that what clients see is what they will get, more
efficient human resource usage, since no technical
resources are necessary in mockup-driven requirements
elicitation.

7. Conclusion

MODFM improves the efficiency of requirements
elicitation for web applications. It is accomplished by
utilizing formalized J2EE-oriented architecture and web
system generator. MODFM guarantees to deliver running
web applications to incrementally elicit, validate, and
finalize user requirements early and consistently;
consequently reduce the cost of nearly inevitable changes
to the business rules, programming environment, or
software design. Many of these practices have been part of
conventional wisdom for years, such as fast-prototyping,
use case analysis, and SABRE; but rethinking their
interaction is the value of MODFM.

The efficiency and effectiveness of MODFM highly
rely on our architectural model and web system generator
and these two techniques are J2EE-oriented. Hence, if the
web technology changes significantly, these two
techniques need to be upgraded accordingly. However, we
believe that the concept and approach of MODFM is
extensively applicable; therefore it can be fully reused by

future web applications as long as corresponding
architecture-oriented web system generator is plugged in.

8. References

[1] D. Bolchini and P. Paolini, “Capturing Web Application
Requirements through Goal-Oriented Analysis”, The 5th

Workshop on Requirements Engineering, Valencia, Spain, Nov.
11-12, 2002.
[2] C.K. Chang, J.C. Huang, S. Hua, and A.K. Combelles,
“Function-class Decomposition: A Hybrid Software Engineering
Method”, IEEE Computer, Dec. 2001, pp. 87-93.
[3] Y. Deshpande and S. Hansen, “Web Engineering: Creating a
Discipline among Disciplines”, IEEE Multimedia, Apr.-Jun.
2001, pp. 82-87.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Addison Wesley 1994.
[5] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object Oriented Software Engineering – A Use Case Driven
Approach, Addison-Wesley, 1992.
[6] W.J. Lee, S.D. Cha, and Y.R. Kwon, “Integration and
Analysis of Use Cases using Modular Petri Nets in
Requirements Engineering”, IEEE Transactions on Software
Engineering, vol. 24, no. 12, Dec. 1998, pp. 1115-1130.
[7] http://java.sun.com/j2ee.
[8] J. Nawrocki, M. Jasinski, B. Walter, and A. Wojciechowski,
“Extreme Programming Modified: Embrace Requirements
Engineering Practices”, IEEE Joint International Conference on
Requirements Engineering (RE'02), Essen, Germany, Sep. 9-13,
2002, pp. 303-310.
[9]. N. Nüell, D. Schwabe, and P. Vilain, “Modeling Interactions
and Navigation in Web Applications”, Proceedings of the World
Wide Web and Conceptual Modeling'00 Workshop, ER'00
Conference, Springer, Salt Lake City, 2000.
[10] P. Szekely, “User Interface Prototyping: Tools and
Techniques”, USC/Information Sciences Institute, 1994.
[11] E. Yourdon, Modern Structured Analysis, Yourdon Press,
Upper Saddle River, N.J., 1989.
[12] J. Zhang and J.Y. Chung, “Mockup-driven Fast-
prototyping Methodology”, Software-Practice and Experience,
to appear.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

