
WS-Trustworthy:
A Framework for Web Services Centered Trustworthy Computing

Jia Zhang Liang-Jie Zhang Jen-Yao Chung
Department of Computer Science IBM T.J. Watson Research IBM T.J. Watson Research

Northern Illinois University
Chicago, IL 60115 Yorktown Heights, NY 10598 Yorktown Heights, NY 10598
jiazhang@cs.niu.edu zhanglj@us.ibm.com jychung@us.ibm.com

Abstract

The emerging paradigm of Web services has been
gaining significant momentum in the recent years since it
offers a promising way to facilitate Business-to-Business
(B2B) collaboration. However, it is not clear that this new
model of Web services provides any measurable increase
in computing trustworthiness. In this paper we propose a
generic framework to control the trustworthiness of
computing in the domain of Web services. A layered
model is established to highlight four key elements:
resources, policies, validation processes, and
management. The robustness of this model exhibits its
flexibility and extensibility. Examples utilizing our
framework are reported.

1. Introduction

On January 15, 2002, Bill Gates delivered a company
wide email that coined a concept known as “Trustworthy
Computing” [5]:

“…Trustworthy Computing is computing that is as
available, reliable and secure as electricity, water
services and telephony….”

As Bill Gates billing it as the highest priority to the
entire Microsoft workforce [5], this concept of trustworthy
computing has been significantly changing the way that
Microsoft designs and builds software [12]. Moreover,
this concept has been leading the whole IT industry to a
complete new level of trustworthiness in computing.

As Microsoft’s follow-up white paper indicates, the
concept of trustworthy computing has been bringing a
“sea change” not only in the way how software is
developed and delivered, but also in the way how the
whole society views computing in general [7]. Since we
are still at the infant stage of this new revolution,
enormous amount of research issues, either immediate or
fundamental, are open for resolutions. Our research is
initiated and excited by this challenge.

This research focuses upon trustworthy computing in
the domain of Web services. The emerging paradigm of

Web services has been obtaining significant momentum in
both academia and industry in recent years. Simply put, a
Web service is a programmable Web application that is
universally accessible through standard Internet protocols
[4], such as Simple Object Access Protocol (SOAP) [10].
By means of each organization exposing its software
services on the Internet and making them accessible via
standard programmatic interfaces, this model of Web
services offers a promising way to facilitate Business-to-
Business (B2B) collaboration. In addition, Web services
technology largely increases cross-language and cross-
platform interoperability of distributed computing [4].
Furthermore, this paradigm of Web services opens a new
cost-effective way of engineering software to quickly
develop and deploy Web applications by dynamically
integrating other independently published Web services
components to conduct new business transactions.

However, it is not clear that this new model of Web
services provides any measurable increase in computing
trustworthiness. Among other aspects, the essential feature
of “dynamic discovery and integration” of Web services
model raises new challenges to software trustworthiness.
In a traditional software system, all of its components and
their relationships are pre-decided before the software
runs. Therefore, each component can be thoroughly
tested, and the interactions among components can be
fully tested, before the system starts to run. Web services
extend this paradigm by providing a more flexible
approach to dynamically locate and assemble distributed
Web services in an Internet-scale setting. In detail, when a
system requires a service component, the system will
search a public registry [11] where Web services
providers publish their services, choose the optimal Web
service that fulfils its requirements, bind to the service’s
Web site, and invocate the service. In other words, in this
dynamic invocation model, it is likely that users may not
even know which Web services they will use [6], much
less those Web services’ trustworthiness. Even worse,
since a Web service is potentially a dynamic entity
controlled and hosted by its provider, there are no
guarantees that the code underlying the Web service is not
being updated; therefore, the inherent trustworthiness of
the Web service may be varied with time.

In summary, the flexibility of Web services-centered

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



computing is not without penalty since the value added by
this new paradigm can be largely defeated if: (1) the
selected Web service component does not thoroughly
fulfill the requirements (i.e., functional and
nonfunctional), (2) the hosts of Web services components
act maliciously or errantly at invocation times, (3) erratic
Internet behaviors or resource scarcity pose unendurable
time delays, or (4) the selected Web services components
act errantly in the composed environment.

Therefore, our research seeks to explore
trustworthiness in the domain of Web services.
Throughout this paper, from this point on, trustworthy
computing refers to trustworthy computing in the domain
of Web services. In addition, although computing has
broad scope that includes software, hardware, system,
services, etc. [7], we focus on software computing only. In
this paper, we propose a generic framework safeguarding
Web services-centered trustworthy computing. We
achieve our goal in the following ways. First, we identify
trustworthy entities or resources that are needed to ensure
the trustworthiness. Second, we identify and formally
represent trustworthy policies. Third, we propose a
validation process for trustworthiness. Fourth, we present
an environment for trustworthiness management.

The remainder of this paper is organized as follows. In
Section 2 we discuss related work. In Section 3, we
propose a generic trustworthy framework. In Section 4,
we apply our framework to an example. In Section 5, we
discuss trustworthy resource layer. In Section 6, we
discuss trustworthy policy layer. In Section 7, we discuss
trustworthy validation process layer. In Section 8, we
discuss trustworthy management layer. In Section 9, we
present self-assessments on our framework. In Section 10,
we draw conclusions and describe future work.

2. Related work

In recent years, researchers have been doing much
work on modeling Web services-oriented system
architecture. Generally, all of the proliferating work is
built upon eXtensible Markup Language (XML) [16]
technology. Among them, Web Services Description
Language (WSDL) [13] is the basis of other work.
Intending to formally and precisely define a web service,
WSDL from W3C (http://www.w3c.org) is becoming the
ad hoc standard for web services publication.

However, WSDL can only specify limited static
information of a web service, such as its abstract interface,
bindings to specific message formats and protocols, and
the location the service [17]. In recognition of this
problem, researchers from both academia and industry
have been developing other description languages to
extend the power of WSDL to depict Web service
architecture. Among the efforts, BEA, IBM, and

Microsoft’s Business Process Execution Language for
Web Services (BPEL4WS) [2] is an outstanding example.
BPEL4WS is a programming abstraction that allows
developers to compose multiple synchronous and
asynchronous Web services into an end-to-end business
flow. In other words, it is a language that can be used to
specify business processes and business interaction
protocols. With built-in support for asynchronous
interactions, flow control, and compensating business
transactions, BPEL4WS specifies an interoperable
integration model aiming at facilitating the automatic
integration of Web services components. Collaxa BPEL
Server [3], among others, provides a platform to model,
connect, deploy and manage BPEL processes.

IBM, Globus, and HP propose the WS-Resource
framework to facilitate the universal access of stateful
resources contained in Web services [14]. WS-Resource
framework not only defines a set of syntax specifications
for developers to define stateful resources and associate
resources with Web services, but also defines a set of
syntax specifications for users of the Web services to
access their associated resources.

WS-Security [15] standard proposes a family of
protocols that enhances SOAP [10] messaging technique
to solve three basic problems about the quality of
protection of Web services: authentication and
authorization of users, message integrity, and message
encryption. Focusing on secure communication, these
mechanisms can be used to accommodate a wide range of
security models and encryption technologies.

Based upon WS-Security, six enhanced models help to
establish secure interoperable Web services [15]: (1) WS-
Policy provides a syntax-wired model to specify Web
services endpoint policies; (2) WS-Trust defines methods
to request and issue security tokens for establishing trust
relationships; (3) WS-Privacy specification describes a
model for expressing privacy claims inside of WS-Policy
descriptions and associating privacy claims with
messages; (4) WS-Authorization defines how Web
services manage authorization data and policies; (5) WS-
SecureConversation defines a security context based upon
security tokens for secure communication; and (6) WS-
Federation defines mechanisms to enable identity,
account, attribute, authentication, and authorization
federation across different trust realms.

However, WS-Security and related techniques and
languages only address the security issue of Web services-
centered computing, while trustworthiness is a holistic
property that encompasses many more attributes beyond
security, such as reliability, availability, safety,
survivability, performance, fault tolerance, etc. In
addition, although these WS-Security related languages
define a basic set of constructs that can be used and
extended by other Web Services specifications to describe
a broad range of service requirements, preferences, and

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



capabilities, none of these languages provides any
assertion for Web services endpoint properties.

In contrast with these related work and standards, our
research intends to establish a generic framework that
proposes a layered model to assure trustworthy
computing. This model is oriented to Web services-
centered computing, in the sense that layers except the
policy layer are equipped with an ad hoc Web services
standard format or protocol or product that are described
above.

3. Framework

In this section, we propose a generic framework to
control trustworthiness of Web services-centered
computing. We believe that four key elements are
imperative to safeguard trustworthy computing, namely,
resources, policies, validation processes, and
management, as shown in Figure 1:

• Resources: The process of computing involves
different types of participant entities, such as the
organizations, users, people who engage in the
software life cycle by acting in different roles (e.g.,
developers, testers, analysts, etc.), and other entities
(e.g., agents if agents technology [9] is adopted).
Every entity needs to take responsibility to assure the
trustworthiness. Different roles and their
responsibilities need to be identified and clearly
delineated.

• Policies: Policies identify the factors that are likely to
compromise the trustworthiness, in other words, what
constitute trustworthiness or how these factors can
best be measured. Policies should also explicitly

address roles and their responsibilities and expected
behaviors.

• Validation processes: Trustworthiness control
involves addressing each factor in order to enhance or
control it. These are the procedures that document
how policy objectives are to be achieved and verified.

• Management: Trustworthiness should be traced and
monitored as a programmatic entity throughout the
whole life cycle of a Web services-centered project.

Based upon these four elements, a layered framework
is proposed to assure trustworthy computing, as illustrated
in Figure 2. The framework is composed of four
trustworthy layers: resource layer, policy layer, validation
process layer, and management layer. Meanwhile, this
model is considered to be oriented to Web services-
centered computing, in the sense that each layer is
equipped with an ad hoc Web services standard language
or product. In the rest of this section, we briefly describe
each layer. More details will be discussed in the following
four sections.

The highest layer is the trustworthy resource layer. As
shown in Figure 2, different roles are identified in this
layer to represent different types of entities involved in the
computing; each has its dedicated responsibility to assure
trustworthy computing. In this layer, a set of basic roles is
predefined, such as organization, user, role player, agent,
etc. WS-Resource [14] is associated with the resource
layer to formally describe each role.

The second layer is the trustworthy policy layer. As
illustrated in Figure 2, multiple polices are identified to
express different aspects of trustworthiness requirements.
A set of high-level policies is predefined in this layer,
such as security, reliability, safety, survivability, etc. Each

Figure 1. Key elements for safeguarding Web services-centered trustworthy computing

Trustworthiness

Resources Policies

Management Validation processes

• Organization
• Users
• Role players
• Agents

• Rules

• Monitoring
• Tracing • Processes

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



policy may involve multiple roles from the resources
layer.

The third layer is the validation process layer, which
defines procedures that validate the corresponding
policies. As shown in Figure 2, a policy may be validated
by different procedures, which may be either independent
with each other or related to each other. BEPL4WS [2] is
associated with this layer to formally define each
validation process.

The fourth and the lowest layer is the management
layer, which provides an environment to monitor and track
the execution of the validation procedures defined in the
validation process layer. In other words, it determines how
the trustworthiness processes are to be monitored and
logged. As shown in Figure 2, this layer runs each
validation process to test the trustworthiness of the
system. A check is also enabled to ascertain the
effectiveness of the validation processes. The management
layer should also include the assessment to ensure that
policies and procedures meet the requirements. BPEL
Integration Development Environment (IDE) such as
Collaxa BPEL Server [3] can be associated with the
management layer to execute the validation processes
defined using BPEL4WS.

4. Applying the Framework

In the last section, we presented our framework to
control trustworthy computing. In this section, we discuss
how to apply our framework to assure trustworthy
computing.

As Neumann states, the term trustworthiness always
refers to the fact that a particular component is worthy of
being trusted to fulfill some critical requirements [8].
Therefore, for a specific Web services-centered
application system, above all, the set of trustworthiness
requirements need to be identified. Then for each
identified requirement, a stepwise routine as described
below can be followed to apply our framework to
establish a trustworthiness assurance measurement. In
order to help readers understand our method, we will walk
users through an example explained as follows.

Let us consider an application system that utilizes
mobile agents technology [9] to facilitate dynamic
selection of flight reservation Web services. The policies
and validation process and the rationale underneath them
are discussed in another paper. Due to the page limitation,
here we mostly simplify the system just to illustrate how
to apply our framework. Assume that all the candidate
flight reservation Web services will return a number at
invocation, and the trustworthiness requirement is to only
select the candidate services that will not return negative
numbers. With the trustworthiness requirement identified,
now we are ready to apply our framework.

First, we need to identify trustworthy resources
involved with the requirement, and model each resource
using WS-Resource. The details of the procedure will be
discussed in Section 5.

Second, we need to identify trustworthy policies. The
details of the procedure will be discussed in Section 6.

Third, we need to define trustworthy validation
processes, and model the processes using BPEL4WS [2].

Figure 2. A framework for Web services-centered trustworthy computing

Resource layer

Policy layer

Validation process
layer

Management layer

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



The details of the procedure will be discussed in Section
7.

Fourth, we need to apply the constructed
trustworthiness control model to the Collaxa server
platform [3]. The details of the procedure will be
discussed in Section 8.

It should be noted that the extent, timing, and
documentation of the executable trustworthiness
measurement developed for every specific application to
satisfy the requirements of our framework will vary and
will depend upon many factors, including the size and the
nature of the application system.

5. Trustworthy Resource Layer

The process of computing involves different types of
participant entities, such as the organizations, users,
people who engage in the software life cycle by acting in
different roles (e.g., developers, testers, analysts, etc.),
and other entities (e.g., agents if agents technology [9] is
adopted). Every entity needs to take responsibility to
assure the trustworthiness. Different roles and their
responsibilities need to be identified and clearly
delineated. Earlier studies, such as those by Boehm [1],
have revealed that accountability structure (i.e., proper
definition of roles and responsibilities) is imperative to
ensure the success of a software project. Therefore, this
layer will facilitate a role-based trustworthiness assurance.

In our framework, four types of resources are
predefined as follows:
• Organizations: This resource refers to both the

organizations that are involved with the application
system and the ones that provide Web services as
components.

• Users: This resource refers to the users of the
application system.

• Role players: This resource refers to the people who
engage in the software life cycle by acting in different
roles (e.g., developers, testers, analysts, etc.), and

• Other entities: This resource refers to other entities
involved. For example, if the agents technology [9] is
adopted, agents are introduced into the system; thus,
agents should be identified as resources.

Considering our example, we can see that all of the
four types of resources are needed. Furthermore, we need
to further identify the role of trustworthiness testers. As a
minimum, three roles are in turn predefined: (1) the
program manager (PM) who is accountable for delivering
a system that meets the trustworthiness expectation, (2)
the technical project officer who is accountable for
delivering a system to the PM that meets the PM’s stated
trustworthiness requirements, and (3) quality assurance
(QA) manager who is responsible for developing the QA

Plan and for measuring, assessing, and reporting
trustworthiness performance against objectives.

It can be easily seen that roles can be considered as
WS-Resources due to three characteristics that roles
possess: (1) uniqueness: each role has a distinguishable
identity and lifetime; (2) Statefulness: each role maintains
a specific state that can be materialized using XML; and
(3) accessibility: the information of each role should be
accessed through one or more Web services to provide
another dimension of trust.

We will walk through the definition of a QA manager
role QualityController using WS-Resource specifications
as follows. The definition of a QualityController is shown
in Figure 3. The state of a QualityController is composed
of four resource property components: (1) its unique
identification number, (2) its responsibility related to
trustworthiness, (3) whether the role is mandatory, and (4)
the skill set that the role requires. Then its resource
properties document, named QualityControllerproperties,
is defined as shown in Figure 3.

Figure 4 shows how the defined QualityController role
can be published as part of the Web service by embedding
code into the WSDL description of the Web service. Then
the WS-Resource properties document declaration of
QualityController is associated with the WSDL portType
definition via the use of the Resource Properties attribute,
as highlighted in Figure 4. Later service requestors may

<xs: schema

targetNamespace=”http://wstc.com/QualityControllerPro
pertiesExample”

xmlns:tns=”http://wstc.com/QualityControllerProperti
esExample”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
…>

<xs:element name=”RoleID” type=…/>
<xs:element name=”Responsibility” type=…/>
<xs:element name=”Mandatory” type=…/>
<xs:element name=”RoleRequirements” type=…/>

<xs:element name=”QualityControllerProperties”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”tns:RoleID”/>
<xs:element ref=”tns: Responsibility”/>
<xs:element ref=”tns: Mandatory”/>
<xs:element ref=”tns: RoleRequirements”/>

</xs:sequence>
</xs:complexType>

</xs:element name=”QualityControllerProperties”>

Figure 3. Code piece 1

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



obtain and examine this XML schema definition of the
WS-Resource properties document, which represents the
type of stateful resource QualityController. A sample
SOAP request to the QualityController resource is shown
in Figure 5. The SOAP message requests two properties
of the specific QualityController of a system: his/her
identification number and his/her skill set.

6. Trustworthy Policy Layer

Policies should explicitly address roles and their
responsibilities and expected behaviors. Policies identify
the factors that are likely to compromise the

trustworthiness. Trustworthiness control involves
addressing each factor in order to enhance or control it. It
is apparent that the second step cannot proceed without
the first step being completed successfully. However,
there does not appear to be a clear consensus in practice
or in the literature as to what constitutes trustworthiness or
how these factors can best be measured.

It should be noted that the policy layer does not contain
detailed technical information. For example, a policy may
require that all SOAP messages sent to a service provider
over the Internet be protected. How to realize this policy
is a validation process issue though, whether the SOAP
message will be encrypted first before being sent to the
service provider, or the SOAP message will not be
encrypted but will be sent through an encrypted channel.

A set of high-level policies is predefined in this layer,
such as security, reliability, safety, survivability, etc. Due
to the page limitation, we will not discuss in detail each
predefined policy. Instead, we will focus on the specific
policy our example requires. In our example, the policy
can be informally specified as that, if a candidate flight
reservation Web service returns a negative value, the
mobile agent should alert the service requestor to abandon
the candidate.

7. Trustworthy Validation Process Layer

Validation processes are meant to provide reasonable
assurance that the system of trustworthiness control is
relevant, adequate, and complied with in practice. The
validation processes normally include the development of
a general strategy and the preparation of a detailed
approach to the corresponding policies and may also
outline the supervision and review responsibilities and
other trustworthiness control procedures specific to the
trustworthiness requirement.

Compared to the policy layer, the validation process
layer is less stable. It is unlikely that the policies will
change radically oftentimes. On the other hand, however,
due to the ever-evolving technologies and products, the
validation process layer may change on a regular basis to
adapt to new technological changes. It should be noted
that the different validation processes that are associated
with the same policy should achieve the same objective.

As a language that can be used to specify business
processes and business interaction protocols, BPEL4WS
[2] can be used to model the validation process. Let us
walk through our example to illustrate how to use
BPEL4WS to model validation processes. If the remote
flight reservation Web service generates a negative
number as return, it should be considered as an exception.
The agent needs to handle the NegativeNo fault then. As
shown in Figure 6, the agent uses the <invoke> section to
invoke the Web service FlightRESerivce. A

<QualityControllerProperties>
<QCID></QCID>
<RoleID>QualityController</RoleID>
<Responsibility>Certify Quality</Responsibility>
<Mandatory>yes</Mandatory>
<RoleRequirements></RoleRequirements>

</QualityControllerProperties>

Figure 5. Code piece 3

<wsdl:definitions

targetNamespace=”http://wstc.com/QualityControllerPro
perties”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:wsrp=”http://www.ibm.com/xmlns/stdwip/web

-services/ws-resourceproperties”
xmlns:tns=”http://wstc.com/QualityControllerProperti

es”
…>
…

<wsdl:types>
<xs:schema>

<xs:import
namespace=http://wstc.com/QualityControllerProperties
schemaLocation=”…”/>

</xs:schema>
</wsdl:types>

…
<wsdl:portType name=”QualityControllerInfo”

wsrp:ResourceProperties=”tns:QualityController
ResourceProperties”>

<operation name=”…
…

</wsdl:portType>
…
</wsdl:definitions>

Figure 4. Code piece 2

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



<faultHandlers> section is embedded to handle the
exception. The fault handlers define the activities that
must be performed in response to NegativeNo faults
resulting from the invocation of the assessment and
approval services. The WSDL fault NegativeNo is
identified by a qualified name formed by the target
namespace of the WSDL document in which the relevant
portType and fault are defined.

8. Trustworthy Management Layer

The purpose of monitoring and tracking the application
of trustworthiness control policies and procedures is to
obtain reasonable assurance that the system of
trustworthiness control is suitably designed and effectively
applied. Monitoring involves an ongoing consideration
and evaluation of: (1) the relevance and adequacy of the
trustworthiness control policies and validation procedures,
(2) the appropriateness of the resources provided, (3)
compliance with trustworthiness control policies and
validation procedures, and (4) the consistency of the
policies and validation procedures with the developments.

BPEL Integration Development Environment (IDE),
such as Collaxa BPEL Server [3], can be used to execute
the validation processes defined using BPEL4WS. In
more detail, as a validation process written in BPEL4WS
is inputted into a Collaxa server, the Collaxa server has
the built-in ability to (1) test validation process by
examining the state of BPEL process instances, (2) track
execution and capture the history of the validation
process, and (3) monitor the validation process by
aggregating statistical information.

It should be noted that the responsibility for monitoring
the application of trustworthiness control policies and
procedures is different from the overall responsibility for

trustworthiness control. Therefore, whenever possible, it
is desirable that the two responsibilities be assigned to
different roles and individuals.

Monitoring and tracking can also reveal deficiencies of
trustworthiness control policies and procedures. Thus
further investigations or corrective actions can be
performed based upon the execution of the validation
processes.

9. Discussions

In this section we discuss the merits and limitations of
our framework.

9.1 Merits of the framework

The robustness of this model is its layered approach
where each layer is built upon an organization foundation
and ad hoc standards.

Web services-centered computing normally involves a
federation of organizations and technologies; therefore, it
is nearly impossible to deliver a solitary set of polices and
validation processes that cover a multiplicity of diverse
organizations, requirements, skills, resources, and
technologies. Instead, in our model, policies and
validation processes are separated. The same policy can
be implemented and validated by different processes. It
should be noted that the policy layer does not contain
detailed technical information; instead, this layer
describes what needs to be achieved but not how.

Our framework can be adapted and extended to suit the
needs of adopting trustworthiness requirements. As we
illustrated in the example, on one hand, the framework is
general and comprehensive enough to be used as a generic
guidance to construct an executable model to assure
trustworthiness requirements; on the other hand, the
framework is made as lean as possible while still fulfilling
its mission to help safeguard predictably trustworthy
software.

Since Web services-centered computing seeks
interoperability between components on a worldwide
basis, information data are defined based upon standard
data formats and protocols. Seamlessly incorporating the
most recent standards and typical tools, in our framework,
each layer (except trustworthy policy layer) is associated
with an ad hoc standard language or platform. Therefore,
our framework provides a practical guidance of
establishing trustworthiness assurance measurement. It
should be noted that the language or tool associated with
each layer can be replaced by other products, while the
concept of our framework still applies. Therefore, our
framework will neither impinge upon software vendors’
flexibility nor thwart enterprise autonomy.

Finally, our framework should interest organizations

<scope containerAccessSerializable=”no”>
<faultHandlers>

<catch faultContainer=”frError”
faultName=”frs:NegativeNo”>

<!—send assertion to the service requestor -->
…

</catch>
</faultHandlers>
<sequence>

<invoke inputContainer=”frInput” name=”flightRE”
operation=”process” outputContainer=”frOutput”
partner=”flightREService”
portType=”frs:FlightREService”/>
…

</sequence>
</scope>

Figure 6. Code piece 4

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 



that pursue formal trustworthiness control, since our
framework defines a robust system of trustworthiness
control that should result in a number of benefits to an
organization as it:
• Promotes consistency amongst staff within an

organization by formalizing trustworthiness control
policies and making the work more effective and
efficient;

• Provides guidance on the assignment of an assurance
team that collectively possesses the necessary
competencies and skills to complete the
trustworthiness requirement;

• Improves the quality of performance of building
trustworthiness measurement;

• Establishes professional standards that can be used as
a benchmark by those who monitor the performance
of organizations and practitioners;

• Enables the identification and evaluation of threats to
software trustworthiness; therefore the organization
can take appropriate actions to eliminate those threats
or reduce them to an acceptable level by the
application of safeguards, and monitor the
compliance with the applicable trustworthiness
requirements; and

• Provides additional confidence amongst those who
use practitioner reports issued by an organization.

9.2 Limitations of the framework

It should be noted that our framework provides a high
level guidance of establishing trustworthiness control.
Each layer of the model for a specific application system
needs to be manually created. The quality of the model to
be built is fully dependent on the experience of the
practitioners. In order to make our framework more
practical, we need an integrated development environment
tailored to the framework.

In addition, our current work only provides some high
level instructions to apply our framework to build an
infrastructure of trustworthiness control. A methodology
is needed to provide more detailed guidance for
practitioners.

Furthermore, in our current framework we do not
formally define trustworthy policies. We know that WS-
Policy [15] is fully based upon XML and does not place
limits on the types of requirements and capabilities of
Web services that can be described. Therefore, the
specification syntax should be extended to identify other
attributes, such as the trustworthy policies.

10. Conclusions and Future Work

In this paper we propose a generic framework to assure
Web services-centered trustworthy computing. Our

framework exhibits robust flexibility and extensibility to
guide the measurement of software trustworthiness. Our
future work will include: (1) constructing framework
tailored integrated development environment to help build
the model, (2) exploring extending WS-Policy to formally
define trustworthy policies, and (3) conducting more case
studies.

11. References

[1] B.W. Boehm, “R&D Trends and Defense Needs”, Research
Directions in Software Engineering, Ed. by P. Wegner, 1979,
Cambridge, MA: MIT Press.
[2] IBM Corporation, “Business Process Execution Language
for Web Services (BPEL4WS),” Version 1.0, 2002.
[3] http://www.collaxa.com.
[4] C. Ferris and J. Farrell, "What Are Web Services?",
Communications of the ACM, 46(6), Jun. 2003, pp. 31.
[5] Bill Gates, “Trustworthy Computing”, email,
http://www.wired.com/news/business/0,1367,49826,00.html.
[6] N. Gold, C. Knight, A. Mohan, and M. Munro,
“Understanding Service-Oriented Software”, IEEE Software,
Mar./Apr. 2004, pp. 71-77.
[7] C. Mundie, P. ve Vries, P. Haynes, and M. Corwine,
“Trustworthy Computing”, Microsoft White Paper, revised
version,
http://www.microsoft.com/mscorp/innovation/twc/twc_whitepap
er.asp.
[8] Peter Neumann, “Principled Assuredly Trustworthy
Composable Architectures”, emerging draft of the final report
for DARPA’s Composable High-Assurance Trustworthy
Systems (CHATS) program,
http://www.csl.sri.com/users/neumann/chats4.pdf.
[9] A. Pham and A. Karmouch, “Mobile Software Agents: An
Overview”, IEEE Communications magazine, 36(7), Jul. 1998,
pp. 26-37.
[10] http://www.w3.org/TR/SOAP.
[11] http://www.uddi.org/specification.html.
[12]
http://www.microsoft.com/windowsserver2003/developers/top1
0fordevs.mspx.
[13] http://www.w3.org/TR/wsdl.
[14] http://www-106.ibm.com/developerworks/library/ws-
resource/ws-wsrf.pdf.
[15] http://www-
106.ibm.com/developerworks/webservices/library/ws-secure.
[16] .B. McLaughlin and M. Loukides, Java and XML, O’Reilly
Java Tools, 2001.
[17] L.-J. Zhang, “Challenges and Opportunities for Web
Services Research”, International Journal of Web
Services Research (JWSR), 1(1), 2004.

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04) 
0-7695-2225-4/04 $ 20.00 IEEE 


	footer1: 


