
Ubiquitous Provision of Context Aware Web Services

Irene Y.L. Chen1, Stephen J.H. Yang 2, Jia Zhang3

Ching Yun University, Taiwan1 National Central University, Taiwan2 Northern Illinois University3

irene@cyu.edu.tw1 jhyang@csie.ncu.edu.tw2 jiazhang@cs.niu.edu3

Abstract

Context-aware Web service is an interactive model
between the context of service requesters and the
services in Web-enabled environments. We envision
that providing context-aware services is the first step
toward ubiquitous Web services to enhance current
Web-based e-business by finding right business
partners, right business information, and right
business services in the right place at the right time.
The major contributions of this paper are the
development of our context model and Context Aware
Service Oriented Architecture (CA-SOA). We have
developed a context model to formally describe and
acquire contextual information pertaining to the
service requesters and services. Based on the model,
we have constructed CA-SOA for ubiquitous Web
service discovery and access based on service and
requesters’ surrounding context.

Keywords: Context aware, Ubiquitous Web services,
Service oriented architecture, OWL-S

1. Introduction

The objective of ubiquitous provision of Web
services is to move Web and mobile services a step
further from Web services at anytime anywhere to be
at the right time and right place with right services.
While mobile service emphasizes on users’ mobility
and physical location, ubiquitous service extends its
emphasis to users’ social perspectives and personal
accessibility. We summarize the characteristics of
ubiquitous Web services and their requirements as
follows.

Mobility: The continuousness of computing
capability while moving from one point to another.
Requirements include mobile computing on
portable devices with embedded software.
Location awareness: The capability of detecting
and identifying the locations of persons and
devices. Requirements include outdoor positioning
and indoor positioning.
Interoperability: The capability of interoperable
operation between various standards of resource
exchange and service composition and integration.
Requirements include standards of content,

services, and communication protocols.
Seamlessness: The capability of providing an
everlasting service session under any connection
with any device. Requirements include state
transition of network roaming and service
migration.
Situation awareness: The capability of detecting
and identifying persons-situated scenario.
Requirements include knowing what the person is
doing with whom at what time and where.
Timely adaptation: The capability of dynamically
adjusting service/content depending on users’
services needs. Requirements include knowing
people’s accessibility and preferences.
Pervasiveness: Provide intuitive and transparent
way of service/content access. Requirements
include knowing what a user wants before he/she
explicitly expresses it.

The characteristics of ubiquitous Web services
pose significant challenges yet to be overcome before
we can realize ubiquitous environment. Such
characteristics and constraints need to be formalized
with requirements specification in order to satisfy the
demands of a ubiquitous environment.

In this paper, we present our context aware Web
services, which are designed to connect, integrate,
and share three dimensions of business resources:
business partners, business information, and business
services. In this paper, business partners refer to
various roles in a typical inter organizations business
process, such as suppliers, buyers, mediators, or
simply any business workers. Business information
means product description, products, or simply any
information. Services are Web services such as Web
meetings, suppliers discovery, products discovery,
information sharing, communication among business
partners, etc.

Context aware Web service is an interactive model
between the context of service requesters and the
services in Web-enabled environments [13]. We
define the term “context” from two perspectives: one
is from service requesters, and the other is from
services. From the service requesters’ perspective,
context is defined as the surrounding environment
affecting requesters’ Web services discovery and
access, such as requesters’ profiles and preferences,
network channels and devices the requesters are

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

using to connect to the Web, etc. From the services’
perspective, context is defined as the surrounding
environment affecting Web services delivery and
execution, such as service profiles, networks and
protocols for service binding, devices and platforms
for the service execution, etc.

For better illustration, let us consider a typical
scenario demanding ubiquitous services. Steve is a
manager, who just finished a product presentation in
a trade fair and wants to call for a “PC-based Web
business meeting” service and discuss some timely
issues with his colleagues. The “availability” of the
service must be 99% or above; otherwise, he might
lose valuable business information. During the Web
meeting, Steve communicates with his colleagues
using various devices for exchanging
multimedia-based information. After thirty minutes
of “PC-based Web business meeting,” Steve needs to
drive back to his office for a pre-scheduled
face-to-face meeting with his boss. He wants to
continue the “Web business meeting” with his
colleagues while he is driving. Hence, Steve needs to
automatically switch to “PDA-based Web business
meeting.” Based on Steve’s requirements, a published
Web service entitled “Web business meeting” may be
a qualified candidate. The service can be used by
either PCs or PDAs via wireless LAN or GPRS with
99% availability for any requesters when they are on
travel.

Meanwhile, there is a lot of contextual
information that may affect how well Steve can be
served with such a ubiquitous provision of Web
services. For example, who else attend the conference?
Who are Steve’s colleagues and what are they doing
during the meeting? What if Steve’s colleagues are
not available at the time? Can Steve find some other
information or people with proper expertise? What
kind of network channels and devices is Steve using
to connect to the Web? What will the different
situations, e.g., driving, affect Steve’s device usage,
network access and service delivery? These
contextual requirements also need to be addressed to
find appropriate services.

This example shows the necessity of ubiquitous
service provisioning based upon ever changing
contextual environments of services and service
requesters. We envision that providing context-aware
services is the first step toward ubiquitous Web
services to enhance current Web-based e-business by
finding right business partners, right business
information, and right business services in the right
place at the right time.

In this paper, we present our context model to
formally define context description pertaining to
service requesters and services. A context acquisition

mechanism is designed for collecting contextual
information at run time. Based on the context model,
we propose our Context Aware Service Oriented
Architecture (CA-SOA) for Ubiquitous Web services
discovery and access based on service and service
requester’s surrounding context.

The remainders of this paper are organized as
follows: Section 2 addresses related work. Section 3
addresses context description and context acquisition
to form our context model. Section 4 presents our
CA-SOA model. We conclude this paper in Section 5.

2. Related Work

One of the essential characteristics of a Service
Oriented Architecture (SOA) is to help service
requesters discover and locate desired services.
Widely regarded as part of the foundation of Web
services, UDDI [11] is a centralized service registry
that defines a standard method for publishing and
discovering Web service components in a
service-oriented architecture. However, most of
UDDI-based inquiries always return a lot of unrelated
results and, even worse, requesters will receive the
same reply service no matter where they are and what
devices they use. More specifically, the lack of taking
contextual information into account usually leads to
low-recall, low-precision and irrelevant results of
service discoveries.

Context refers to any information that can be used
to characterize the situation of an entity, which can be
a person, a place, a physical or computational object
[10]. Literature has witnessed many research efforts
on the development of context-awareness toolkits
supporting Web services provisioning, including HP’s
Cooltown project [3], Dey’s The Context Toolkit [2],
the CB-SeC framework [8], the Gaia middleware [9],
etc. These toolkits either provide functionalities to
help service requesters obtain services based on their
contexts or enable content adaptations according to
requester’s contextual information.

In order to promote context aware service
provisioning, Kouadri et al. [6] proposed a formal
definition of service contexts to model a service’s
contextual information. Lemlouma et al. [7] proposed
a framework to assert metadata information of Web
contents. They both used Composite
Capabilities/Preferences Profiles (CC/PP) as
interoperable context representation to enable
communication and negotiation of device capabilities
and user preferences in terms of a service invocation.
Zhang et al. [15] further proposed extensions to
CC/PP to enable transformation descriptions between
various receiving devices. Besides, several

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

OWL-based context models are presented [1,4,5] to
provide high-quality results of service discoveries
beyond the expressive limitations of CC/PP. These
researchers utilized ontology to describe contextual
information including location, time, device,
preference and network, etc. By combining semantic
contextual information with inductive or deductive
techniques, these models can perform matches
against both service and receiver’s context
semantically.

In contrast to aforementioned related works, our
approach stands out from three aspects: (1) we
formalize a ontology-based context model; (2) we
provide comprehensive real-time context acquisition
methods; and (3) we employ a rule-based matching
algorithm with truth maintenance to enhance the
recall and precision of context-aware service
discovery.

3. Context Model

In this section, we present our context model that
is developed to formally define context description
pertaining to service requesters and services. A
context acquisition mechanism is also designed for
collecting contextual information at run time.

The underlying foundation of our context model is
to treat a context-aware Web service as a
parameterized abstract machine. An abstract machine
is characterized by statics (i.e., state variables) and
dynamics (i.e., state functions). Contextual
information is represented as functions that may
change the state of the service. All functions are
equipped with formally defined pre-conditions,
post-conditions and invariants based upon the
ontologies defined in our context model. The abstract
machine structure is defined as follows:

MACHINE M(X,x)
ONTOLOGIES O
DEFAULTS D
SETS S; T={a,b}
PROPERTIES P
VARIABLES V
INVARIANT I
ASSERTIONS J
INITIALIZATION B
REQUIREMENTS
u1 <- O1(w1) = PRE Q1 THEN V1 END
…
un <- On(wn) = PRE Qn THEN Vn END
END

The abstract machine has free dimensions X (set)
and x (scalar). ONTOLOGIES describes semantic
meanings of machine parameters. SETS contains finite
or named sets that the machine can use. DEFAULTS
describes default values. PROPERTIES takes form of
conjoined predicates specifying invariants involving
defaults and sets. VARIABLES lists state variables,
and INVARIANT describes static properties of the
machine, that must be maintained with contextual
settings. ASSERTIONS is deducible from
PROPERTIES and INVARIANT, and exists purely to
ease the proving of machine correctness.
INITIALIZATION initializes state variables.
REQUIREMENTS lists possible requirements of an
abstract machine, with pre-conditions PRE and
post-conditions THEN.

3.1 Context Description

We conceive context awareness as an interactive
model between service requesters and services; thus,
we need to address the context description from both
parties. We have developed two types of context
ontology for describing the circumstances of
requesters and services respectively: requester
ontology and service ontology.

The major difference between the requester
ontology and service ontology is their profiles. The
requester ontology contains requester profiles such as
personnel profile, accessibility and preferences,
calendar profile, social profile, and location profiles
as follows.

Requester_ontology =
{Profiles, Preferences, QoWS,

Environment, Devices}
Profiles =

{Personnel, Location, Calendar, Social}
Personnel_profile =

{name, role, id, email, accessibility}
Location_profile =

{office, building, home}
Calendar_profile =

{owner, event , time, attendee*, location}
Social_profile = {owner, partner+}
QoWS =

{Functional requirements,
non-functional requirements}

Environment = {Network_channel, Situation}
Network_channel = {wired, wireless}
Situation =

{normal, meeting, walking, driving}
Devices = {hardware, software}

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

The service ontology contains service profile such
as input, output, pre-condition, and effect of service
execution as follows.

Service_ontology =
{Profile, QoWS, Environment, Devices}

Service Profile =
{name, id, description, input, output,
pre-condition, effect}

QoWS =
{Functional requirement,
non-functional requirement}

Environment =
{Network channel, Situation}

Network channel = {wired, wireless}
Situation = {normal, meeting, walking, driving}
Devices = {hardware, software}

In addition to profiles, both requester ontology
and service ontology contains surrounding context
such as Quality of Web Services (QoWS),
environment profiles, and device capability profiles.
QoWS profiles contain both functional and
non-functional constraints. Functional QoWS
constraints can be described by network bandwidth
and response time; non-functional QoWS constraints
can be described by reliability, availability, and cost.
Environment profiles contain network channel
constraints and situated location constraints. Network
channel constraints can be used to describe the types
of channels such as wired or wireless; situated
location constraints can be used to describe requester
situated environment such as in a meeting, reading,
walking, or driving. Devices profiles contain a
device’s hardware and software constraints. Various
devices such as PDAs and mobile phones are
equipped with different hardware and software
constraints. Hardware constraints can be used to
describe hardware capabilities of a device such as
platform, CPU speed, memory size, screen size and
resolution. Software constraints can be used to
describe software capabilities of a device such as
operating system, browser, playable media type, and
resolution.

3.2 Context Acquisition

With our ontology models, both service requesters
and services could define their contextual information
accordingly. We define context acquisition as a
process of obtaining the values of the properties
defined using the requester ontology and service
ontology. We separate the context acquisition
function from the context aware services. This

decoupling enables the reuse of existing context
acquisition functions for various services.

Context acquisition can be conducted in three
ways: form-filling, context detection, and context
extraction. In the form-filling approach, contextual
information is acquired directly from requesters’
inputs. In the context detection approach, we utilize
various sensing, recording, and positioning systems
(e.g., GPS, RFID, and sensor networks) for location
detection. In the context extraction approach, we
derive contextual information from requester
ontology and service ontology. The first approach
form-filled can be used to construct personnel profile,
preferences, calendar profile, and social profile; the
term form-filled explains for itself. We thus will
concentrate on the other two approaches: context
detection and context extraction.

3.2.1 Context Detection Context detection is to
detect and analyze contextual information such as
location, environment and device profiles during the
run time. We have designed a context detection
environment that facilitates the process from both
service side and service requester side. On the service
requester side, we have utilized smart devices and
sensor networks to sense and react to the requesters’
surrounding environment, as we reported in [14]. On
the service side, we have designed a Web service
portal to accept service requests featuring a recording
capability [14]. Whenever a requester logs in, our
portal catches the request, analyze what kind of
devices the requester is using to build the device
profile, and detect what kind of network channel the
requester is connecting to the Internet to build the
environment profile. The situation such as whether
the requester is in a meeting or is driving remains
unknown at this stage; and we defer this analysis to
the context extraction phase. Besides detecting the
request, our portal also records and keeps the history
of a service request associated with every requester
who registers in this portal. Based on the historical
information, we can conduct analysis about the
requesting behaviours and requesting patterns that are
important references for building requesters’
preferences.

Our environment is equipped with a set of location
detection Web services that can match all possible
location tracking functionalities currently available
for requesters’ devices, and filter them based on
requesters’ actual contexts. For example, if a
requester is outside of a building, then a GPS location
detection service will be invoked to return her
location in terms of building name or number. If the
requester is inside of a building, then an indoor
tracking service provided by RFID or sensor network

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

will be invoked to return her location in terms of
room numbers. Once the location is positioned, our
location detection services can further decide whether
to disclose the location based on requester’s privacy
preference. One thing worth noting is that in our
environment, we consider privacy preference in a
dynamic manner and can be adjusted based on
location and temporal constraints. For example, if a
requester is in her office during her office hours, she
is willing to disclose the room number she is
currently in to her students. If she is out of town in a
trip, she may only disclose her position to her
colleagues and family members.

3.2.2 Context Extraction If the context detection
services can not detect current context explicitly,
requesters’ profiles will be taken into consideration.
We define context extraction as a process to derive
contextual information from requesters’ preferences
and profiles. Comprehensive contextual information
can be extracted combining static and dynamic
approaches. The static context extraction elicits a
requester’s default context from her predefined
preferences and personnel profile. The dynamic
context extraction deduces a requester’s actual
context from her calendar profile and social profile.

In the static approach, except for those required
properties for which requesters must specify their
values such as name, id, role, email, etc, other
properties defined in personnel profile and
preferences have predefined default values. As a
result, our system fills in the default values for the
requesters if they do not explicitly specify the
property values. We refer this process as context
wrapping, and we will address this part in more detail
in Section 4.

In the dynamic approach, we analyze a requester’s
calendar and social profiles to deduce her actual
contextual information. Using our example earlier, by
checking Steve’s calendar profile and social profile,
we can find out at 10:15am on Wednesday, he is in a
meeting with his team members.

As shown below, we formally define a requester’s
calendar profile with properties that indicate the
owner of this calendar, the privacy of using this
calendar, the event title and description, the begin
time and end time of the event, as well as the attendee
and location of the event. Privacy is a property
containing policy rules to determine whether this
calendar is accessible for public or for private
reference only.

Calendar_profile = {owner, event, time,
attendee*, location}

owner = {name, id, privacy}

event = {title, description}
time = {begin(yyyy:mm:dd;hh:mm),

end(yyyy:mm:dd;hh:mm)}
attendee = {name, contact_info}
 location = {place, contact_info}

Social profile is used to find the most related
business partners when a requester does not explicitly
specify whom she is working with. Social profile is
also useful when a requester makes her calendar
profiles private but such information is needed to
locate her contexts. This goal can be fulfilled by
querying every partner’s calendar profile to find the
events associated with the target requester. A
requester can have various types of business partners
such as an individual or a group of team workers. The
formal definition of social profile is as follows.

Social_profile = {owner, partner+}
 owner = {name, id, privacy}
 partner = {type, name, context_info},
 type =

{individual | working_team | enterprise |
community}

4. Context Aware Service Oriented
Architecture

Based on our context model, we propose a
Context Aware Service Oriented Architecture
(CA-SOA). As shown in Figure 1, CA-SOA consists
of three components for ubiquitous discovery and
access of Web services based on surrounding
contexts: an agent platform (service, broker, and
request agents), a service repository (service profile
and service ontology), and a semantic matchmaker
(capability matchmaker, context matchmaker, context
reasoner, and service planner).

We identify three types of agents in this CA-SOA:
service agents, broker agents, and request agents. The
agents have been implemented to enhance the
context-oriented service description, publication,
registration, discovery, and access. As shown in
Figure 1, a service agent is designed to help service
providers formally describe and wrap the service with
contextual descriptions. The service agent then sends
the service with the contextual descriptions to the
broker agent. A request agent is designed to help
service requesters formally describe their service
requests and wrap the requests with requesters’
surrounding contexts. The request agent then sends
the requests with requester’s context descriptions to
the broker agent. A broker agent takes the service
publishing requests from the service agent and saves

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

the service descriptions and service contextual
descriptions into the service profiles and the service
ontology, respectively. The broker agent also takes
the requests from the request agent and initiates
context aware semantic matchmaking.

Figure 1. Context aware SOA

Context aware semantic matchmaking consists of
two stepwise phases: capability matching and context
matching. As shown in Figure 1, our service
repository is designed to encompass a general UDDI
Registry associated with service profiles and service
ontologies. If the required services are found by the
capability matchmaker in the UDDI Registry, the
semantic matchmaker will proceed the context
matching. The semantic matchmaker consists of a
context reasoner and a service planner. The context
reasoner decomposes the service request, based on
requesters’ ontology sent along with the service
request by the request agent, into a set of sub-requests.
The service planner performs a context matching
process in order to schedule an integrated composite
service based on the decomposed request.

4.1 Context-oriented request description

Generally speaking, requesters input the keywords
of their requests to indicate the titles of services they
want. A sophisticated query interface may ask the
requesters to give the inputs and outputs, or even
pre-conditions and effects of the requested services.
Nevertheless, none of the existing request query
considers requesters’ surrounding contexts, which
fact may reduce the precision of search results.
Moreover, if the query user interface asks requesters

to explicitly tag the contextual information, it will
cause the requesters tremendous overhead and
discourage them to use context-aware Web services.
We thus utilize the request agent to automatically
wrap the contextual information as defined in
requester ontology. The steps of wrapping contextual
information and transforming them into requester
ontology are as follows:

1. The request agent provides a query interface for
service requesters to input the keywords of their
query.

2. The request agent instantiates an instance of
requesters’ ontology.

3. The request agent enacts a context acquisition
service that consists of context detection and
context extraction.

4. The request agent provides a context wrapper
service to tag the properties defined in the
requesters’ personal ontology.

5. The request agent provides a request wrapper
service to package the request query along with
the tagged requester ontology.

6. The request agent sends the request package to the
broker agent.

Using our example, Steve, as a requester, inputs a
service request for “Web business meeting” through
the query user interface. Steve is a manager who just
finished a product presentation in a trade fair and
wants to call for a “Web business meeting” and
discuss with his colleagues. The “availability” of the
service requested by Steve needs to be beyond 99%
or he could lose valuable business information during
the meeting. The result of contextual information
wrapped by the request agent is shown as follows.
Due to the page limit, we only show part of the
transformed OWL-S code with contextual description
of the request.

<?xml version="1.0"?>
<rdf:RDF>
 <owl:DatatypeProperty
rdf:ID="Social_Owner_Name">
 <rdfs:domain
rdf:resource="#Social_Owner"/>
 Steve
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty

rdf:ID="Owner_Privacy">
 <rdfs:domain

rdf:resource="#Calendar_Owner"/>

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

 Public
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty

rdf:ID="Default_Value_of_Device">
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>
 NB, PDA
 <rdfs:domain rdf:resource="#Preferences"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="Bandwidth">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>
 10Mbps
 <rdfs:domain
rdf:resource="#Functional_Constraints"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="Availability">

 <rdfs:domain
rdf:resource="#Non-functional_Constraints"/>
 99%
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>

</owl:DatatypeProperty>
<Situation rdf:ID="Meeting"/> Audio Off
<Situation rdf:ID="Driving"/> Video Off

</rdf:RDF>

4.2 Context-oriented service description and
publication

To avoid overhead, we utilize the service agent to
automatically wrap the contextual information as
defined in service ontology from the service side. The
steps of wrapping contextual information and
transforming them into service ontology are as
follows:

1. The service agent provides a parser user interface
for service providers to input their service
descriptions in OWL-S.

2. The service agent instantiates an instance of
service ontology.

3. The service agent enacts a context acquisition
service that consists of context detection and
context extraction.

4. The service agent provides a context wrapper
service to tag the properties defined in the service
ontology.

5. The service agent provides a publishing request
wrapper service to package the service along with
the tagged service ontology for publication.

6. The service agent sends the publishing request
package to the broker agent.

For example, a service provider provides a
business service entitled “Web business meeting”,
which can be used by either PC or PDA devices via
wireless LAN or GPRS with 99% availability for any
requesters who are out of office. Part of the
transformed OWL-S code with contextual description
of service is shown as follows.

 <owl:DatatypeProperty rdf:ID="Availability">
 <rdfs:domain
rdf:resource="#Non-functional_Constraints"/>
 95%
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema
#string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="Platform">
 <rdfs:domain rdf:resource="#Software"/>
 NB, PDA
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema
#string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="OS">

 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema
#string"/>

 Windows NT, Windows XP
 <rdfs:domain rdf:resource="#Software"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="Browsers">
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema
#string"/>

 Microsoft IE, Mozilla Firefox, Netscape
 <rdfs:domain rdf:resource="#Software"/>
</owl:DatatypeProperty>

4.3 Context-oriented service discovery

The interactive model is enacted by a semantic
matchmaking, which can perform semantic reasoning
for context-oriented service discovery and access
based on the two context ontologies. Our
context-oriented service discovery consists of two
stepwise phases: capability matching and context
matching. In capability matching, we utilize the
DAML-S/UDDI methodology that uses IN and OUT

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

to find a set of Web services with capabilities
matching the requests. In context matching, we refine
our query by conduct context matching. We have
utilized broker agents to handle the service
publishing requests sent by service agents and to
handle the service requests sent by request agents.

While handling the service publication and
registration, the broker agents help the service
repository maintain a copy of service profiles
published by service agents. Since the service agents
wrap the published services with contextual
description, the broker agents will help the semantic
matchmaker keep the associated contextual
descriptions into the service ontology. The service
agents keep the original service profiles and service
ontology; and the broker agents keep the copies. The
broker agents also provide a caching mechanism to
improve search performance if the same services are
requested by multiple requesters. Whenever the
service profiles and service ontology are updated, the
service agents need to inform the broker agents.
While handling the service requests, the broker
agents take the service requests as input and forward
this request to semantic matchmaker for service
discovery. The stepwise context-oriented Web service
discovery is described as follows.

1. The request agent sends the request wrapped with
requester’s context to the broker agent.

2. The broker agent forwards the request to service
planner and performs capability match.

3. If there is no request matched, the context
reasoner will decompose the request into
sub-requests based on requester’s context, and
repeat capability match in Step 2 for each
sub-request.

4. The service planner returns matched services to
the broker agent.

5. The broker agent forwards the request to context
reasoner to perform context matching for finer
granularity.

6. The broker agent relays the information to the
request agent.

Our capability matching strategy is based on
inputs and outputs to identify the similarities between
requests and service’s advertisements. There are three
matching degrees:

1. Exact match: Both outputs and inputs of desired
service are equivalent of request’s, i.e., INAd=
INReq and OUTAd = OUTReq.

2. Plug-in match: The outputs of a service are more
specific than request’s, or inputs of a service need
less information than request provides, i.e.,

OUTAd ⊃ OUTReq or INReq ⊃ INAd.
3. Subsumed match: The outputs of a service can

only provide partial information needed by the
request, or inputs of a service are more specific
than the request provides, i.e., OUTReq ⊃ OUTAd
or INAd ⊃ INReq.

For context matching, we have implemented the
requester ontology and service ontology with
rule-base system using the Java Expert System Shell
(JESS) and have developed inference rules for
context matching with the consideration of truth
maintenance, as we reported in [12]. The reason of
performing truth maintenance is that the contexts
regarding requesters and services change constantly;
thus, the newly detected contextual information must
be consistent with existing contextual profiles and
ontology. Otherwise, we need to do adjustment to
preserve the correctness of rule base. According to
the scenario we addressed in the Introduction section,
with the rule base system, our system can answer
typical queries such as: “What is the main theme of
the meeting Steve attends?” “Where is the meeting
held?” “When and how long will the meeting be
held?” etc.

5. Conclusions and Future Research

In this paper, we have presented our context model
to formally define context description pertaining to
service requesters and services. A context acquisition
mechanism is also designed for collecting contextual
information at run time. Based on the context model,
we have presented our Context Aware Service Oriented
Architecture (CA-SOA) for ubiquitous Web services
discovery and access based on services and service
requesters’ surrounding contexts.

In this research, we utilize OWL-S as a vehicle to
carry contextual information. Although OWL-S is a
known tool from the semantic Web society tailored for
Web services descriptions, our context model and
CA-SOA are not limited to OWL-S. For instance, we
can use Web Services Agreement Specification
(WS-Agreement) from Global Grid Forum or Web
Service Level Agreement (WSLA) from IBM to carry
the knowledge.

In our future research, we will continue to enhance
our CA-SOC in the categories of rule base truth
maintenance, request decomposition, service planning,
and service verification. We also plan to conduct more
experiments to examine performance metrics including
precision and recall ratio of services discovery,
efficiency of service composition, effectiveness of
service verification, and reliability of service execution.

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

Acknowledgment

This work is supported by NSC, Taiwan under grants
94-2524-S-008-001, 93-2524-S-009-004-EC3.

References

[1] T. Broens, S. Pokraev, M.v. Sinderen, J.
Koolwaaij, and P.D. Costa, “Context-aware,
Ontology-based, Service Discovery,” Proc. of
2nd European Symposium on Ambient
Intelligence (EUSAI 2004), Nov. 8-10, 2004,
Eindhoven, The Netherlands, pp. 72-83.

[2] A.K. Dey, “The Context Toolkit,”
http://www.cs.berkeley.edu/~dey/context.html

[3] Hewlet Packard, “Cooltown Project,”
http://www.cooltown.com/cooltown/index.asp

[4] M. Khedr and A. Karmouch, “Negotiating
Context Information in Context-Aware
Systems,” IEEE Intelligent Systems, Vol. 19,
No. 6, pp. 21-29. 2004.

[5] M. Khedr “A Semantic-Based, Context-Aware
Approach for Service-Oriented
Infrastructures,” Proc. of 2nd IFIP
International Conference on Wireless and
Optical Communications Networks (WOCN
2005), Mar. 6-8, 2005, Dubai, United Arab
Emirates UAE, pp. 584-588.

[6] S.K. Mostefaoui and B. Hirsbrunner, “Context
Aware Service Provisioning,” Proc. of the IEEE
International Conference on Pervasive Services
(ICPS), Jul. 19-23, 2004, Beirut, Lebanon,
pp.71-80, 2004.

[7] T. Lemlouma and N. Layaida, “The
Negotiation of Multimedia Content Services in
Heterogeneous Environments,” Proc. of The
8th International Conference on Multimedia
Modeling(MMM 2001), Amsterdam, The
Netherlands, Nov. 5-7, 2001, pp. 187-206.

[8] S.K. Mostefaoui, A. Tafat-Bouzid, and B.

Hirsbrunner, “Using Context Information for
Service Discovery and Composition,” Proc. of
5th International Conference on Information
Integration and Web-based Applications and
Services (iiWAS 2003), Jakarta, Indonesia, Sep.
15-17, 2003, pp. 129-138.

[9] M. Roman, C.K. Hess, R. Cerqueira, A.
Ranganathan, R.H. Campbell, and K. Nahrstedt,
“Gaia: A Middleware Infrastructure to Enable
Active Spaces,” IEEE Pervasive Computing,
Vol. 1, No. 4, Oct.-Dec. 2002, pp.74-83.

[10] B.N. Schilit, N.I. Adams and R. Want,
“Context-Aware Computing Applications,”
Proc. of the Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA,
USA, Dec. 1994, pp. 85-90.

[11] UDDI.org, “UDDI Specification Version 3,”
http://www.oasis-open.org/committees/uddi-spe
c/doc/tcspecs.htm#uddiv3.

[12] S.J.H. Yang, J.J.P. Tsai, and C.C. Chen, “Fuzzy
Rule Base Systems Verification Using High
Level Petri Nets,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, No.
2, Mar.-Apr. 2003, pp. 457-473.

[13] S.J.H. Yang, I. Chen, and N. Shao,
“Ontological Enabled Annotations and
Knowledge Management for Collaborative
Learning in Virtual Learning Community,”
Journal of Educational Technology and Society,
Vol. 7, No.4, pp. 70-81. 2004.

[14] S.J.H. Yang, “Context Aware Ubiquitous
Learning Environments for Peer-to-Peer
Collaborative Learning,” Journal of
Educational Technology and Society, Vol. 9, No.
1, Jan, 2006.

[15] J. Zhang, L.-J. Zhang, F. Quek, and J.-Y. Chung,
“A Service-Oriented Multimedia
Componentization Model”, International
Journal of Web Services Research (JWSR), Vol.
2, No. 1, Jan-Mar. 2005, pp. 54-76.

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

