
A Service Supporting Universal Access to Mobile Internet with
Unit of Information-Based Intelligent Content Adaptation

Stephen J.H. Yang1, Jia Zhang2, Norman W.Y. Shao3, Rick C.S. Chen4

1,4National Central University, Taiwan, 2Northern Illinois University, USA
3Naval Shipbuilding Development Center, Taiwan

1jhyang@csie.ncu.edu.tw, 2jiazhang@cs.niu.edu, 3snorman@giga.net.tw, 4chungshiuan@csie.ncu.edu.tw

Abstract
In the mobile Internet, users mostly work with

handheld devices with limited computing power and small
screens. Their access conditions also change more
frequently. In this paper, we present a novel service
supporting intelligent content adaptation to better suit
handheld devices. The underlying technique is a Unit of
Information (UOI)-based content adaptation method,
which automatically detects semantic relationships
among comprising components in Web contents, and then
reorganizes page layout to fit handheld devices based on
identified UOIs. Experimental results demonstrate that
our method enables more exquisite content adaptation.

1. Introduction

In a mobile Internet environment, users oftentimes
work with handheld devices, such as Personal Digital
Assistants (PDAs) and mobile phones, which are featured
with good mobility but limited computational capabilities
and display sizes. Since most of the existing Web contents
are originally designed for display on desktop computers,
direct content delivery without layout adjustment and
content adaptation often leads to disorganized information
on handheld screens. In addition, not every handheld
device can play all media types, e.g., a non-multimedia
mobile phone cannot play continuous video clips.
Furthermore, users’ access conditions change more
frequently in a mobile Internet environment than in a
desktop-based Internet environment [1, 2]. Under some
circumstances, it may be unnecessary to deliver all rich
media information. For example, if a user is driving, it is
unnecessary to deliver video clips because drivers are not
supposed to watch video while driving.

Content adaptation thus refers to a technique of
dynamically adjusting content presentation to meet the
constraints of different receiving devices for better
presentation [3]. It can further save unnecessary network
bandwidth by removing media that are un-playable on
certain devices. The conventional approach of providing
different versions of Web content to support various types
of receiving devices is not only labor-intensive but also
error-prone. Simply changing a multi-column layout to a
single-column one also introduces problems with
semantics missing among components. As a result, tools
and mechanisms are urgently needed to provide seamless

Web content adaptation and delivery service to handheld
derives.

In the mobile Internet, content adaptation aims to
bridge the gap between content providers and mobile
consumers. The following four major research issues have
to be tackled: (1) representation and detection of mobile
user contexts, (2) adaptation rule design, (3) content
adaptation management, and (4) format (e.g., stylesheet)
generation. In this paper, we will focus on problem (3):
content adaptation.

A digital content is typically composed of multimedia
objects such as text, images, audio and video. These
objects are connected with each other via different
relationships, e.g., an image can illustrate a section of text
article; a text title can abstract a text article or some
images. In other words, these related objects are
synergistically integrated to help readers understand what
authors intend to express. Improper rearrangement of
these objects and their relationships may lead to
ambiguous expression or loss of information. Therefore, it
is important for a content adaptation mechanism to
maintain the original semantic consistence among
comprising objects during an adaptation process.

In this paper, we present a novel service supporting
dynamic Unit of Information (UOI)-based content
adaptation for handheld devices. Our goal is to improve
Web content accessibility in the mobile Internet, while
retaining semantic coherence of the original contents. To
achieve this goal, we introduce UOI as an atomic
presentation unit of a Web page; all media objects in a
UOI have to be presented as a whole. We present an
algorithm to automatically identify and detect UOIs from
Web pages. Experiments showed that our UOI detection
algorithm successfully identified 78% of UOI segments in
our test bed. We also found that our method performs well
for well-formatted Web pages.

The remainder of this paper is organized as follows.
We first introduce related work in Section 2. Then we
present our dynamic content adaptation framework,
information fragment detection mechanism, and content
adaptation method in Section 3. Afterwards, we present
our experimental designs and result analyses in Section 4.
Finally, we draw conclusions in Section 5.

2. Related work

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Associating with Extensible Stylesheet Language
(XSL), XML-based transformation has been widely used
to support heterogeneous content adaptation [4-6]. XSL
Transformation (XSLT) is usually used as a generic XML
transformation engine, by transforming one format of
structured XML data into another.

Many content adaptation prototypes have been built in
recent years. Among them, Phan et al. [6] propose a
middleware, called Content Adaptation Pipeline (CAP), to
perform content adaptation on any complex data types,
not only text and graphic images. XML is used to describe
all the elements in a content hierarchy. Berhe et al. [7]
present a service-based content adaptation framework. An
adaptation operator is introduced as an abstraction of
various transformation operations such as compression,
decompression, scaling, and conversion. A logic
adaptation path is determined by associating adaptation
constraints to proper combinations of adaptation
operators. To determine the optimal service, a path
selection algorithm is proposed based on cost and time
considerations. Their work shows a proof-of-concept of
Web-based content adaptation; however, the
implementation is still in a preliminary phase. How to map
from constraints to adaptation operators is unsolved. Lee
et al. [8] develop a middleware-based content adaptation
server providing transcoding utilities named GAMMAR.
A table-driven architecture is adopted to manage
transcoding services located across a cluster of network
computers. Their approach allows incorporation of new
third-party transcoding utilities. Lemlouma and Layaida
[5] propose an adaptation framework, which defines an
adaptation strategy as a set of description models,
communication protocols, and negotiation and adaptation
methods. Two adaptation methods are examined: XSLT-
based structural adaptation and media adaptation [9].

Some researchers focus on content decomposition
methods. Chen et al. [10] propose a block-based content
decomposition method, DRESS, for quantifying the
content representation. An HTML page is factorized into
blocks, each being assigned a score denoting its
significance. DRESS selects the block with the highest
score to represent the content. This method prevents from
missing significant information. It also enables content
layout to become adjustable according to the region of
interest, attention value, and minimum perceptible size
[11]. Ramaswamy et al. [12] propose an efficient fragment
generation and caching method based on detection of
three features: shared behavior, lifetime, and
personalization characteristic. The smallest adjustable
element in these two approaches is a composite of objects
(i.e., text, image, audio, and video). This granularity of
decomposition is too large for mobile device screens;
therefore, they are not suitable for mobile content
adaptation.

Our previous studies in content adaptation [13, 14]

focus on multi-column to single-column layout
transformation. We have proved that this method can
provide better browsing experience for mobile devices.
However, we found some semantic errors appear when
adjacent media objects crosscut. These errors may confuse
users. To overcome this deficiency, in this paper we
introduce the concept of UOI and present an algorithm to
automatically identify semantically coherent presentation
unit of components that have to be shown together.

3. Content adaptation service

We implemented a Content Adaptation Engine (CAE)
to provide intelligent content adaptation Web service for
mobile devices. As illustrated in Figure 1, CAE contains
three major components for a consecutive process of
transforming original contents into adapted ones:
decomposition, transformation, and composition. In the
decomposition phase, the original Web page is
structurally parsed into components based on predefined
content model. Both the layout and constituent elements
(e.g., text, image, audio, and video) are extracted
separately from this phase. In the transformation phase,
transcoding approaches are used to change the fidelity
and/or modality of the extracted components for better
representation on target devices. In the composition phase,
the presentation styles (layouts) and the adapted
components are reorganized and recomposed into the final
contents to be delivered to the end users.

Figure 1. Three phases of content adaptation.

The interface of CAE is shown as follows in WSDL,
by providing one portType with one operation
“adaptContent.” The operation accepts a SOAP message
“adaptContentRequest” and replies with a SOAP message
“adaptContentResponse.”

<portType name="adaptContent">
 <operation name="adaptContent">
 <input message="adaptContentRequest"/>
 <output message="adaptContentResponse"/>
 </operation>
</portType>

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

3.1 Content Structure Model (CSM)
A Web page typically contains a set of media objects

carrying encapsulated meanings. The semantics among
presentation components have to be maintained to deliver
correct information. For example, an illustrative figure
should be shown close to its detailed text message. When
some contents are adapted to be displayed onto different
devices, the semantics of the decomposed portions in the
adapted contents should remain the same as those in the
original contents. In other words, adapted objects should
be grouped based on semantic consistency. As a result,
how to determine object grouping is the most critical step.

We formalize this object grouping requirement into an
isomorphism problem: the relationships among objects
and formed groups before and after adaptation should be
able to be expressed by an isomorphic graph. To solve
this problem, we utilize a layered Content Structure
Model (CSM) [13] to organize objects with possible
presentation versions of a given Web page. As shown in
Figure 2, a CSM maintains available adaptation rules and
possibilities for individual presentation objects. According
to CSM, Web content is organized in a three-layer
structure, namely structure layer, modality layer, and
fidelity layer. The structural layer comprises the objects
contained in the content; the modality layer comprises
possible presentation types for each object; the fidelity
layer further specifies possible presentation formats for
each presentation type. For example, object OC6 in Figure
2 may be presented in four presentation types: video,
audio, text, and image. Its audio presentation type can be
provided in three formats: mp3, wmv, and midi. If the end
user is using an mp3 player while driving, OC6 should be
provided in audio using an mp3 format.

Figure 2. Content Structure Model (CSM).

We then extend CSM by incorporating object relations
into its structure layer. The goal is to maintain semantic
inherences among objects in layout re-arrangement to
enable more exquisite content adaptation under various
circumstances and contexts.

3.2 Unit of Information (UOI)
As shown in Figure 2, we define an atomic information

unit, or so-called Unit of Information (UOI), as a semantic
unit comprising a set of segments and media objects that
have to be presented together on the same screen. In our
research, UOI is considered as the basic presentation unit
of Web content. In other words, a Web page can be
presented by a composition of multiple UOIs. In CSM,
composition of UOIs is an expression in the structure
layer. The aim of UOI is to preserve the semantic
coherence of Web contents throughout adaptation
processes. UoIs have to be identified in the decomposition
phase; the subsequent transformation and composition
phases have to retain the UoIs unbroken.

A UOI contains two types of elements: segments and
object clusters. To design a Web page content in a markup
language (e.g., HTML), authors typically use various
partition elements (e.g., HTML tags such as <frameset>,
<table>, and <div>) to arrange the layout of information
objects. These partition elements contain no substantial
information but layout arrangements and containing
relationships. Each of these partition elements is called a
segment. Thus, a Web page can be decomposed into a
number of segments organized in a hierarchical structure,
as shown in Figure 3.

Figure 3. The relationship among content, segment, and
object cluster (OC).

Segments can be further classified into two types:
arranging segment (AS) and containing segment (CS).
Figure 4 illustrates the concepts and relationships between
them. An AS refers to a partition element that contains no
concrete media objects as direct children. It is used to
define the layout of a specific portion of a Web page. In
contrast, a CS refers to a partition element that contains at
least one concrete media object as a child.

Figure 4. Arranging segment and containing segment (on a

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

segment tree).

All media objects of a Web page are further classified
into different object clusters based on their types. Without
losing generality, in this research, we consider four types:
text, image, audio, and video. After a parsing process, the
presentation components are identified as “objects”
associating with presentation attributes. The objects with
the same attributes (i.e., modality) may have the same
semantic hierarchies. An object cluster is thus defined as a
collection of media objects that possess the same modality
inside of the same containing segment (CS). Six types of
object clusters are identified: (1) text cluster (TC) (e.g.,
text), (2) still image cluster (SIC) (e.g., jpg, bmp, tiff, and
gif objects), (3) video cluster (VC) (e.g., avi, wmv, and
mpg objects), (4) dynamic image cluster (DIC) (e.g., png
and gif objects), (5) flash cluster (FC) (e.g., swf objects),
and (6) audio cluster (AC) (e.g., mp3 and wav objects).

3.3 Construction of segment trees

We define an intermediate segment tree as a
presentation model, which contains segments and object
clusters of a Web page and organizes them in a tree-like
structure (as show in Figure 4). The purpose of
constructing an intermediate segment tree is for detecting
UOIs in a Web page. The pseudo code of constructing a
segment tree is shown in Figure 5.

page = cleanup(page);
tree = parsePage(page);

//Annotate object clusters
public void markOC(Node n) {
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markOC(n.children[i]);
 }
if ((n.isTC() || n.isSIC() || n.isVC() || n.isDIC() ||
n.isFC() || n.isAC())
 n.type = “OC”;
}

//Annotate AS & CS
public void markASCS(Node n) {
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markASCS(n.children[i]);
 }
 if ((n.type!=“OC”)&&(n.numOfOCChildren()>=1))
 n.type = “CS”;
 else n.type = “AS”;
}

Figure 5. Algorithm of constructing segment tree.

HTML provides great flexibility to integrate a variety

of multimedia types; however, it allows free style writing

that makes it hard to identify and determine various types
of objects in an HTML document. To overcome this
problem, our first step is to transform the content into a
well-formed format. We adopted an open-source package
“HTML tidy” [15] for conducting the task.

Then the cleaned-up HTML page is parsed into a tree-
like structure, each node representing a tag in the page. In
theory, any XML parser can be used to parse the HTML
content. The generated tree structure is traversed for
searching object clusters. According to the six types of
object clusters, we use file extensions to identify object
clusters. Take the following tag as an example:
 “”

The tag node is considered as a still image cluster (SIC)
due to its file extension “jpg.” In general, any tree
traversal algorithm is applicable here. We adopted
recursive post-order traversal algorithm, where each node
is visited after all of its children nodes are visited.

After all object clusters are annotated, we traverse the
segment tree once again to identify containing segments
and arranging segments. Take the following example:

<li id=" 82"> <img
 src="http://news/peace.jpg" width="" height="21">

 Holiday wreath sparks controversy

Recall that the “image” segment has been annotated as
an object cluster. Its enclosing segment “a href” contains
an object cluster; therefore, it is marked as a containing
segment. Since the outmost segment “li” only has one
containing segment as a direct child, it is marked as an
arranging segment.

The result of this process is a segment tree, each node
being annotated as one of the three categories: OC, CS, or
AS. The next step is to identify and detect UOIs in the
segment tree.

3.4 Identification and detection of UOIs

Figure 6 shows our UOI detection algorithm that is
designed based on a constructed segment tree. To ease
explanation, Figure 7 illustrates the detailed rules of how
to annotate and merge various segment nodes to identify
UOIs. Our algorithm goes through a two-phase process:
the first phase traverses the initial segment tree and
annotates an initial set of UOIs (Step 1); the second phase
traverses the result segment tree from phase 1 to further
identify all possible UOIs (Step 2 ~ Step 4).

//Step 1. Annotate UOIs (post-order)
public void markUOI(Node n) {
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markUOI(n.children[i]);
 }
if ((n.type ==”as”) && (n.color != null) &&
(n.numOfOCChildren() >=2))

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

 n.type = “uoi”;
}

// Step 2. Identify UOI candidates and groups
public void markUOICandidateGroup(Node n) {
 if (n.type == “uoi”) return; //uoi already
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markUOICandidateGroup(n.children[i]);
 }
 if ((n.type == “cs”) && (n.numOfOCChildren() >= 2))
 n.type = “uoic”;
 if ((n.type==“cs”) && (n.numOfOCChildren()==1))
 n.type = “group”;
 }

// Step 3. UOI determination
public int determineUOI (Node n) {
 if (n.children != null)
 for (int i = 0; i <= n.children.length(); i++)
 determineUOI (n.children[i]);

 //3.0 if all children are UOI candidates
 if (n.children != null) {
 boolean flag = true;
 for (int i = 0; i <= n.child.length(); i++)
 if (n.child[i].type != “uoic”) {flag = false; break;}
 if (flag) n.type = “uoic”;
 return 0;
 }
 if (n.type != “group”) return 0;

 //3.1 merge group with UOI candidate child
 if (n.contain_UOIC_child()) n.type = “uoic”;

 //3.2 merge group with adjacent UOI candidate
 if ((!contain_uoic_child()) && (n.has_uoic_sibling()))
 n.type = “uoic”;

 //3.3 merge group with adjacent group
 if ((!contain_uoic_child()) && (!n.has_uoic_sibling())
&& (!n.has_group_sibling())) {
 n.type = “uoic”;
 //assign “uoic” to adjacent group
 }

 //3.4 merge group upward
 if ((n.child == null) && (!n.has_sibling())) {
 n.parent = “group”;

return “-1”;
 }
}

// Step 4. UOI Remark
public void remarkUOI(Node n) {

 if (!groupExist(n)) {
 if (n.children != null)
 for (int i = 0; i <= n.children.length(); i++)
 markUOICandidateGroup(n.children[i]);
 if (n.type == “uoic”) n.type = “uoi”;
 }
}

Figure 6. UOI detection. algorithm

In Step 1, the initial segment tree is recursively
traversed in post-order to identify all UOIs. As shown in
Figure 7(1), a segment node is annotated as a UOI if it
meets all three conditions: (1) its type is AS, (2) it has
been annotated with color attribute, and (3) it contains at
least two OC children.

Figure 7. UOI identification and detection process.

Step 2 intends to identify UOI candidates and Groups

in a segment tree. As shown in Figure 7(2.1), a segment is
marked as a UOI candidate if it meets two conditions: (1)
the segment type is CS; and (2) the segment contains at
least two OC children. As shown in Figure 7(2.2), a
segment is marked as a Group if it meets two conditions:

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

(1) the segment type is CS; and (2) the segment contains
only one OC child.

Step 3 deduces more UOIs by merging UOI candidates
and Groups in the result segment tree in four ways. In Step
3.1, as shown in Figure 7(3.1), if a Group contains a UOI
candidate as a child, it merges with its UOI candidate
child to form a new UOI candidate. In Step 3.2, as shown
in Figure 7(3.2), if a Group contains no UOI candidate
children but has an adjacent UOI candidate sibling, it
merges with the UOI candidate sibling to form a new UOI
candidate. If the newly-formed UOI candidate has no
siblings, it is further merged with its parent to form a new
UOI candidate. In Step 3.3, as shown in Figure 7(3.3), if a
Group has neither UOI candidate children nor siblings but
has an adjacent Group sibling, it merges with its adjacent
Group sibling to form a new UOI candidate. If the new-
formed UOI candidate has no siblings, it is further merged
with its parent to form another UOI candidate. In Step 3.4,
as shown in Figure 7(3.4), if a Group does not have any
child or sibling, it is merged with its parent to form a new
Group, and the process goes back to Step 3.1.

Finally, Step 4 cleans up the resulting segment tree. If
no Group exists in the segment tree, all UOI candidates
are marked as UOIs.

3.5 Content adaptation for mobile devices

The aforementioned algorithm helps to automatically
detect all UOIs of a Web page. Through this process, a
segment tree (formatted content tree) is transformed into a
CSM tree annotated by UOIs, which can be used to
generate an adaptation tree leading to the final adapted
content (e.g., in HTML format) based on delivery
contexts. Figure 8 illustrates the relationships between a
content tree, its CSM tree, its adaptation tree, as well as
example adaptation rules.

Figure 8(a) shows the original content designed for PC
or Notebook (NB). To browse the same content via a
PDA, however, its size is far larger than a PDA’s screen
as shown on Figure 8(b). Therefore, the content tree (in
HTML) generated from the original content is translated
into an object relation tree, by extracting the attributes of
the objects and segments. Based on these attributes, we
can construct a CSM tree.

Afterwards, if each UOI fits on the PDA’s screen, then
their locations are rearranged through column-oriented
rearrangement, as shown in Figure 8(c) [13, 14].

If the largest size of UOIs cannot fit into a small-size
screen like a wireless phone, the scales and positions of
the objects in the UOI should be further adjusted, as
shown in Figure 8(d). This paper focuses on UOI-based
fragment detection; the algorithm of adjusting layout
positions will not be discussed.

Figure 8. Content adaptation process.

4. Experiments
To evaluate our UOI detection algorithm, we designed

and conducted a set of experiments to examine visual
performances and conduct quantitative analysis. A set of
35 Web sites are selected and grouped into four
categories: 5 from academia, 2 from news, 11 from
business corporations, and 17 from general Web portals.
Without losing generality, the selection of the Web pages
as testing samples is generally random-based and depends
on statistics of students’ daily access. For each Web site,
we used a PDA screen to visualize three results: (1) the
Web page without any adaptation, (2) the Web page after
standalone page adaptation algorithm (transforming multi-
column to single-column layout), and (3) the Web page
after UOI detection-based page adaptation. The
visualization results for each Web site under the three
strategies were captured as screen shots for comparison.

To perform quantitative analysis, we designed a four-
stage validation procedure to measure the correctness rate
of our UOI detection algorithm on each of the 35 test
cases. Stage 1 builds a target baseline. A Web page is
manually browsed to identify all UOIs using common
sense. The information objects, which have the same or
similar semantic meanings, are grouped as a UOI. Stage 2
executes our algorithm. The identification process is
automatically executed and monitored. Stage 3 evaluates
the results against the baseline. The results from Stage 1
and 2 are compared to calculate the correctness rate of our
UOI detection algorithm. Stage 4 visually validates

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

whether our algorithm could maintain the semantic
meanings of the original contents. The method is to adapt
the Web page based on identified UOIs from Stage 2 and
show the results on a PDA screen. The presentation
sequences of the page is rearranged by forming a single-
column layout based on identified UOIs. Note that this is
just one simple yet efficient way to evaluate our
algorithm. The visual effect is examined to validate
whether the original semantic meanings are maintained.

4.1 Analysis on visual effects

Figure 9 shows the visualized results on a PDA using
the three strategies for three randomly selected Web sites:
Inaba, B’z, and Yahoo. The results for each Web site
occupy one row, which comprises three screen shots:
original content, adapted content without UOI detection,
and adapted content based on UOI detection. As shown in
Figure 9, content adaptation based on our UOI detection
algorithm effectively reorganizes and adjusts the original
content on handheld screens.

Figure 9. Comparison of visualization effects.

As shown in Figure 9, using the standalone

transformation approach, each object is treated
individually and independently, and the adaptation
process may scale up one image object to the entire screen
size. As a result, some unrelated information objects may
be inserted into these related image objects, as shown in
the 2nd column in Figure 9. This simple object-based

adaptation may cause confusing representation. In
contrast, by applying our UOI concept, the original
semantic meaning associated with objects can be
preserved in the process of content adaptation according
to the delivery context.

4.2 Statistical analysis on targeted Web pages

We conducted the tests over the selected 35 testing
samples. For each testing Web page, we measured the
results in the following five factors: (1) the number of
manually identified UOIs, (2) errors occurred in the
decomposition phase, (3) errors occurred in the
composition phase, (4) statistics of incorrectly identified
UOIs, and (5) statistics of correctly identified UOIs. The
detected errors caused by the UOI detection algorithm in
Stage 3 is counted and analyzed in the decomposition
phase; the detected errors caused by the presentation
rearrangement in Stage 4 is counted and analyzed in the
composition phase. Errors caused by decomposition are
further divided into two categories: data loss in the pre-
process and errors from UOI detection algorithm. Errors
caused by composition are further divided into two
categories: errors cause by mis-arrangement and errors
caused by composition.

According to the test results, our UOI detection
algorithm successfully detected 78.49% of UOIs as an
average. In more detail, our algorithm has the highest
correctness rate for the academic pages (88.06%) and the
business (88.04%) pages, then the general portals
(72.98%), and the lowest correctness rate for the news
pages (48.89%). The data also show that our algorithm
has promising correctness rate of UOI detection with well-
formatted Web pages. By examining and monitoring one
business homepage IBM and one news Web site CNN
with low correctness rate, we found that these sites
undergo frequent changes. We further found that these
pages are designed comprising enormous number of
“table” fragments and much multimedia information. This
causes our algorithm produce many false segment nodes
and thus leads to mis-merging in Step 3.

4.3 Analysis on detection errors

We further investigated the found UOI detection errors
for each Web site and categorized them into different
causes. Based on the statistical information, a pie chart is
used to summarize and illustrate the different causes. As
shown in Figure 10, the percentage of detection errors due
to the Step 3 of the UOI detection algorithm (in Figure 6)
is 70.72%; due to information lost after composition is
17.13%; due to mis-arrangement is 7.18%, and due to data
loss in the pre-process is 4.97%.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Figure 10. The distribution of error categories.

We found that some information objects may get lost

after the format transformation in the decomposition phase.
We also found that our merging algorithm needs further
enhancement when corresponding HTML scripts do not
follow exact formats.

Transforming a multi-column layout into a single-
column layout caused two kinds of errors in our
experiments: one is from the composition operation; the
other is from mis-arrangement.

5. Conclusions

In this paper, we have presented a UOI-based dynamic
content adaptation approach. We present algorithms that
automatically detect semantic relationships between
comprising components in Web content, and then
reorganize page layout to suit handheld devices based on
identified UOIs. Our experiments have proved that our
UOI detection algorithm: (1) is effective on preserving
semantic meanings and coherence of information objects
in a Web page, and (2) can largely help and facilitate in
Web page adaptation to mobile devices. Our experiments
also show that our UOI detection algorithm works well
with well-formatted Web pages. Regarding ill-formatted
Web pages, it seems that more cleanup work is necessary
in addition to the Tidy package we adopted. This work can
be conducted in our future research.

We also found several barriers existing in the current
adaptation techniques, such as lacking the capability of
processing script languages (e.g., JavaScript and
VBScript), and lacking session and message processing
mechanism (e.g. login session).

We found an interesting phenomenon, that many Web
pages have similar layout structures but small differences,
even though their contents are significantly different.
These similar but rarely changed portions (e.g., header
fragment and navigation fragment) occupy significant
storage space and consume many computing resources. To
speed up the decomposing time and reduce the required
storage space, we will continue to work on intelligent

fragment detection method to find out similar fragments
among Web pages.

6. References
[1] M. Satyanarayanan, "The Many Faces of Adaptation," IEEE
Pervasive Computing, Jul.-Sep., 2004, 3(3): pp. 4-5.
[2] M. Roman, N. Islam, and S. Shoaib, "A Wireless Web for
Creating and Sharing Personal Content through Handsets,"
IEEE Pervasive Computing, Jan.-Mar., 2005, 4(2): pp. 67-73.
[3] M.T. Chebbine, A. Obaid, S. Chebbine, and R. Johnston,
"Internet Content Adaptation System for Mobile and
Heterogeneous Environment," in Proceedings of Second IFIP
International Conference on Wireless and Optical
Communications Networks 2005 (WOCN 2005), Dubai, United
Arab Emirates, March 6-8, 2005, pp. 346-350.
[4] A. Kinno, H. Yukitomo, and T. Nakayama, "An Efficient
Caching Mechanism for XML Content Adaptation," in
Proceedings of the 10th International Multimedia Modeling
Conference (MMM’04), Jan., 2004, pp. 308-315.
[5] T. Lemlouma and N. Layaida, "Context-Aware Adaptation
for Mobile Devices," in Proceedings of 2004 IEEE International
Conference on Mobile Data Management, 2004, pp. 106-111.
[6] T. Phan, G. Zorpas, and R. Bagrodia, "An Extensible and
Scalable Content Adaptation Pipeline Architecture to Support
Heterogeneous Clients," in Proceedings of the 22nd
International Conference on Distributed Computing Systems,
2002, pp. 507-516.
[7] G. Berhe, L. Brunie, and J.M. Pierson, "Modeling Service-
Based Multimedia Content Adaptation in Pervasive
Computing," in Proceedings of the First Conference on
Computing Frontiers on Computing Frontiers, 2004, pp. 60-69.
[8] Y.W. Lee, G. Chandranmenon, and S.C. Miller, GAMMA: A
Content Adaptation Server for Wireless Multimedia
Applications. 2003, Bell-Labs, Technical Report.
[9] Z. Lei and N.D. Georganas, "Context-based Media
Adaptation in Pervasive Computing," in Proceedings of
Canadian Conference on Electrical and Computer Engineering,
May, 2001.
[10] L.Q. Chen, X. Xie, W.Y. Ma, H.J. Zhang, H.Q. Zhou, and
H.Q. Feng, DRESS: A Slicing Tree Based Web Representation
for Various Display Sizes. 2002a, Technical report MSR-TR-
2002-126, Microsoft Research.
[11] L.Q. Chen, X. Xie, X. Fan, W.Y. Ma, H.J. Zhang, and H.Q.
Zhou, A Visual Attention Model for Adapting Images on Small
Displays. 2002b, Technical report MSR-TR-2002-125,
Microsoft Research.
[12] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis,
"Automatic Fragment Detection in Dynamic Web Pages and Its
Impact on Caching," IEEE Transactions on Knowledge and
Data engineering, 2005, 17(6): pp. 859-874.
[13] S.J.H. Yang and N.W.Y. Shao, "An Ontology Based
Content Model for Intelligent Web Content Access Services,"
International Journal of Web Service Research (JWSR), Apr.-
Jun., 2006, 3(2): pp. 59-78.
[14] S.J.H. Yang and N.W.Y. Shao, "Enhancing Pervasive Web
Accessibility with Rule-Based Adaptation Strategy," Expert
System with Applications, May, 2007, 32(4): pp. 1154-1167.
[15] "Tidy," Available from: http://tidy.sourceforge.net/.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

