Spring April, 2016

On the Kubelka-Munk absorption coefficient

Jing Shen
Ya Li
Ji-Huan He

Available at: https://works.bepress.com/ji_huan_he/82/
Short communication

On the Kubelka–Munk absorption coefficient

Jing Shen a, Ya Li a, Ji-Huan He a, b, *

a National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
b Nantong Textile Institute, Soochow University, 58 Chong Chuan Road, Nantong, China

A R T I C L E I N F O

Article history:
Received 24 August 2015
Received in revised form 27 November 2015
Accepted 29 November 2015
Available online 24 December 2015

Keywords:
Kubelka–Munk equation
Absorption coefficient
Saunderson correction
Inequality
Approximate solution
Nonlinear differential equation

A B S T R A C T

The Kubelka–Munk equation is solved approximately for paint films with finite thickness, an inequality is induced in the solution process, and a minimal Kubelka–Munk absorption coefficient is obtained.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Computer colour matching of paints is based on the determination of the Kubelka–Munk absorption (K) and scattering coefficients (S) of pigments [1–4]. When studying absorption properties, the extinction coefficient E can be expressed as the sum of absorption coefficient K and scattering coefficient S

\[E = K + S \] (1)

For the determination of K and S in some practical dyeing systems, the Kubelka–Munk theory is obviously not valid [5]:

\[\frac{K}{S} = \frac{(R_{\infty} - 1)^2}{2R_{\infty}} \] (2)

where \(R \) is the reflectance of sheet, \(R = R_{\infty} \) when the thickness of the sheet tends to infinity.

The Kubelka–Munk theory was originally developed for paint films having a thickness much smaller than the total thickness [1–4]. This paper focuses on a film with finite thickness.

2. The Kubelka–Munk absorption

Consider light of intensity \(I_0 \) incident on a non-glossy piece of paper of thickness \(L \) and reflectance \(R \). Behind this piece of paper is a surface of reflectance \(R_0 \). The light which re-emerges from the top surface of the paper after scattering, absorption or transmission has intensity \(I \). At a distance \(x \) from the bottom surface of the paper there is a thin lamina of thickness \(dx \) and scattered light is incident on it which is travelling both upwards and downwards through it with intensities \(i_R \) and \(i_T \), respectively. The Kubelka–Munk equation can be written in the form [1–4]:

\[-\frac{di_T}{i_T} = -(S + K)i_T \, dx + i_S \, S \, dx \] (3)

\[\frac{di_R}{i_R} = -(S + K)i_R \, dx + i_I \, I \, dx \] (4)

Eqs. (3) and (4) can be solved analytically by the variational iteration method [5,6]. This paper provides a simple analytical approach to the system.

Divide Eq. (3) by \(i_T \) and Eq. (4) by \(i_R \) and add together:

\[\frac{di_R}{i_R} - \frac{di_T}{i_T} = -2(S + K)i_T \, dx + S \left(\frac{i_R}{i_T} + \frac{i_I}{I} \right) \, dx \] (5)

Define \(R = i_R/i_0 \) as reflectance of sheet and \(r = i_I/i_T \) as reflectance of increment and consider the following inequality:
\[
\frac{i_R}{i_I} \geq 2 \quad \text{(6)}
\]

Eq. (5) can be simplified as

\[
d\ln r \geq -2Kdx \quad \text{(7)}
\]

Integration of Eq. (7) results in

\[
\ln R - \ln R_0 \geq -2KL \quad \text{(8)}
\]

Kubelka–Munk absorption coefficient reads

\[
K \geq \frac{\ln R - \ln R_0}{2L} \quad \text{(9)}
\]

The reflectance \(R \) can be calculated using Saunderson correction \[5\].

\[
R = \frac{k_1 + (1 - k_1 - k_2)R}{1 - k_2R} \quad \text{(10)}
\]

where \(k_1 \) is the fraction of incident light externally specularly reflected upon entering the material, \(k_2 \) is the fraction of light internally diffusely reflected upon leaving the material at the front surface.

Saunderson correction for matt film \[3,7\] is

\[
R = \frac{R - 0.04}{0.4R + 0.56} \quad \text{(11)}
\]

The minimal absorption coefficient is

\[
K_{\text{min}} = \frac{\ln \left(\frac{k_1 + (1 - k_1 - k_2)R}{1 - k_2R} \right) - \ln R}{2L} \quad \text{(12)}
\]

3. Conclusion

This paper gives a formulation for the minimal Kubelka–Munk absorption coefficient for paint films with finite thickness.

Acknowledgements

The work is supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), National Natural Science Foundation of China, under grant No. 11372205 and Project for Six Kinds of Top Talents in Jiangsu Province under grant No. ZBZZ-035, Science & Technology Pillar Program of Jiangsu Province, under grant No. BE2013072.

References