An Improved Amplitude-frequency Formulation for Nonlinear Oscillators

Ji-Huan He, Donghua University

Available at: https://works.bepress.com/ji_huan_he/33/
An Improved Amplitude-frequency Formulation for Nonlinear Oscillators

Ji-Huan He

Modern Textile Institute, Donghua University, Shanghai 200051, China
Email: jhhe@dhu.edu.cn

Abstract
A brief introduction to amplitude-frequency formulae for nonlinear oscillators is given, an improved one is suggested.

Keywords: Nonlinear Oscillation, Duffing equation, period

We consider a generalized nonlinear oscillator in the form

\[u'' + f(u) = 0, \quad u(0) = A, \quad u'(0) = 0 \]
(1)

We use two trial functions

\[u_1(t) = A \cos \omega_1 t \]
(2)

and

\[u_2 = A \cos \omega_2 t , \]
(3)

The residuals are

\[R_1(t) = - \cos \omega_1 t + f(A \cos \omega_1 t) \]
(4)

and

\[R_2(\omega_1 t) = - \omega_1^2 \cos \omega_2 t + f(A \cos \omega_2 t) \]
(5)

The original frequency-amplitude formulation reads[1-4]

\[\omega^2 = \frac{\omega_1^2 R_2(\omega_1 t = \pi/3) - \omega_2^2 R_2(\omega_2 t = \pi/3)}{R_2 - R_1} \]
(6)

In my previous publications[1-4], I just used the following formulation

\[\omega^2 = \frac{\omega_1^2 R_2(\omega_1 t = 0) - \omega_2^2 R_2(\omega_2 t = 0)}{R_2 - R_1} \]
(7)

Geng and Cai improved the formulation by choosing another location point[5]:

\[\omega^2 = \frac{\omega_1^2 R_2(\omega_1 t = \pi / 3) - \omega_2^2 R_2(\omega_2 t = \pi / 3)}{R_2 - R_1} \]
(8)

Generally we can locate at

\[\cos \omega_1 t = \cos \omega_2 t = k \]
(9)

To illustrate this shortcoming, we consider the Duffing equation

\[u'' + u + \varepsilon u^3 = 0 \]
(10)

Using trial functions

\[u_1(t) = A \cos t \]
(11)

and

\[u_2 = A \cos 2t \]
(12)

respectively for Eq.(1), we obtain the following residuals

\[R_1(t) = \varepsilon A^3 \cos^3 t, \]
(13)

and

\[R_2(\omega_1 t) = -3A \cos 2t + \varepsilon A^3 \cos^3 2t . \]
(14)

Locating at \(\cos t_1 = \cos 2t_2 = k \), we obtain

\[\omega^2 = \frac{-3Ak + \varepsilon A^3 k^3 - 4\varepsilon A^3 k^3}{-3Ak + \varepsilon A^3 k^3 - \varepsilon A^3 k^3} = 1 + \varepsilon A^3 k^2 \]
(15)

Its approximate solution reads
In view of the approximate solution, Eq.(16), we re-write Eq.(10) in the form

\[u'' + (1 + k^2 \varepsilon A^2)u = k^2 \varepsilon A^2 u - \varepsilon u^3 \]

If, by chance, Eq.(16) is the exact solution, then the right hand side of Eq.(17) is vanishing completely. Since our approach is only an approximation to the exact solution, we set

\[\int_0^{T/4} \left(k^2 \varepsilon A^2 u - \varepsilon u^3 \right) \cos \omega t dt = 0, \]

where \(T = 2\pi / \omega \). Substituting (16) in (18), we obtain

\[k^3 = \frac{3}{4} \]

Finally the frequency is obtained

\[\omega = \sqrt{\frac{3}{4 + c^2 A^2}}. \]

To improve its accuracy, we can use the following trial-functions:

\[u_i(t) = \sum_{j=1}^{m} A_i \cos \omega_j t \]

\[u_j(t) = \sum_{j=1}^{n} A_j \cos \Omega_j t, \]

or

\[u_i(t) = \frac{\sum_{j=1}^{m} A_i \cos \omega_j t}{\sum_{j=1}^{n} B_j \cos \omega_j t} \]

\[u_j(t) = \frac{\sum_{j=1}^{n} A_j \cos \Omega_j t}{\sum_{j=1}^{n} B_j \cos \Omega_j t}, \]

Most useful trial-functions are

\[u_i(t) = A \cos t \]

\[u_j(t) = a \cos \omega t + (A - a) \cos 3\omega t, \]

and

\[u_i(t) = A \cos t \]

\[u_j(t) = \frac{A(1 + c) \cos \omega t}{1 + c \cos 2\omega t}, \]

where \(a \) and \(c \) are unknown constants. We can always set \(\cos t = k \) in \(u_i \), and \(\cos \omega t = k \) in \(u_j \).

Acknowledgement

This material is based on work supported by the Program for New Century Excellent Talents in University under grand No. NCET-05-0417.

References

