Nonlinear oscillator with discontinuity by parameter-expansion method

Shu-Qiang Wang
Ji-Huan He, Donghua University

Available at: https://works.bepress.com/ji_huan_he/19/
Nonlinear oscillator with discontinuity by parameter-expansion method

Shu-Qiang Wang a, Ji-Huan He b, *

a College of Science, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, China
b Modern Textile Institute, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, China

Accepted 19 July 2007

Communicated by Prof. Ji-Huan He

Abstract

The parameter-expansion method is applied to a nonlinear oscillator with discontinuity. One iteration is sufficient to obtain a highly accurate solution, which is valid for the whole solution domain. Comparison of the obtained solution with the exact one shows that the method is very effective and convenient.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the following nonlinear oscillator with discontinuity [1–3]:

\[u'' + u|u| = 0, \quad u(0) = A, \quad u'(0) = 0. \quad (1) \]

There exists no small parameter in the equation. Therefore, the traditional perturbation methods cannot be applied directly [3].

Recently, considerable attention has been directed towards analytical solutions for nonlinear equations without small parameters. Many new techniques have appeared in the literature, for example, the homotopy perturbation method [4–10], the variational iteration method [11–14], and the energy balance method [15–17]. A complete review is available in Refs. [3,18]. In this paper, we apply the parameter-expansion method [18–21] to the problem we are discussing.

2. Solution procedure

The parameter-expansion method [18–21] entails the bookkeeping parameter method [18,19] and the modified Lindstedt–Poincare method [18,21–23]. Recently, the method has been applied to various nonlinear oscillators, see Refs. [2,24–28]. In order to use the parameter expansion method, we re-write Eq. (1) in the following form [18,21,29]:

\[u'' + 0 \cdot u + 1 \cdot u|u| = 0 \quad (2) \]
According to the parameter-expansion method, we may expand the solution, \(u\), the coefficient of \(u\), the zero, and the coefficient of \(u|u|\), 1, in series of \(p\):

\[u = u_0 + pu_1 + p^2u_2 + \cdots \]
\[0 = \omega^2 + pa_1 + p^2a_2 + \cdots \]
\[1 = pb_1 + p^2b_2 + \cdots \]

Substituting Eqs. (3)–(5) into Eq. (2) and equating the terms with the identical powers of \(p\), we have

\[p^0 : u_0'' + \omega^2u_0 = 0 \]
\[p^1 : u_1'' + \omega^2u_1 + a_1u_0 + bu_0u_0 = 0 \]
\[p^2 : (1 + \omega^2)u_2'' + a_1u_1'' + a_2u_0'' + b_1(|u_0''|u_1'' + u_0'u_1') + b_2u_0''u_0' = 0 \]

Considering the initial conditions \(u_0(0) = A\) and \(u_1'(0) = 0\), the solution of Eq. (6) is \(u_0 = A\cos\omega t\). Substituting the result into Eq. (7), we have

\[u_0'' + \omega^2u_1 + a_1A\cos\omega t + b_1A^2\cos\omega t|\cos\omega t| = 0 \]

It is possible to perform the following Fourier series expansion:

\[\cos\omega t|\cos\omega t| = \sum_{n=0}^{\infty} c_{2n+1} \cos[(2n+1)\omega t] = c_1 \cos\omega t + c_3 \cos3\omega t + \cdots \]

where \(c_1\) can be determined by Fourier series, for example

\[c_1 = \frac{2}{\pi} \int_{0}^{\pi} \cos^2\omega t|\cos\omega t|d(\omega t) = \frac{4}{\pi} \left(\int_{0}^{\pi} \cos^2\tau d\tau - \int_{\frac{\pi}{2}}^{\pi} \cos^2\tau d\tau \right) = \frac{8}{3\pi} \]

Substitution of Eq. (10) into Eq. (9) gives

\[u_0'' + \omega^2u_1 + \left(a_1 + b_1A\frac{8}{3\pi}\right)A\cos\omega t + \sum_{n=1}^{\infty} c_{2n+1} \cos[(2n+1)\omega t] = 0 \]

No secular term in \(u_1\) requires that

\[a_1 + b_1A\frac{8}{3\pi} = 0 \]

If the first-order approximation is enough, then, setting \(p = 1\) in Eqs. (4) and (5), we have

\[1 = b_1 \]
\[0 = \omega^2 + a_1 \]

From Eqs. (13)–(15), we obtain

\[\omega = \sqrt{\frac{8A}{3\pi}} \approx 2.6667\sqrt{\frac{A}{\pi}} \]

The obtained frequency, Eq. (16), is valid for the whole solution domain, \(0 < A < \infty\). The accuracy of frequency can be improved if we continue the solution procedure to a higher order, however, the amplitude obtained by this method is an asymptotic series, not a convergent one. For conservative oscillator

\[u'' + f(u)u = 0, \quad f(u) > 0 \]

where \(f(u)\) is a nonlinear function of \(u\), we always use the zeroth-order approximate solution. Thus we have

\[u(t) = A\cos\left(t\sqrt{\frac{8A}{3\pi}}\right) \]

Fig. 1 illustrates various cases with different values of \(A\).
3. Conclusion

The parameter-expansion method is an extremely simple method. One iteration is enough. Furthermore, the obtained frequency is of high accuracy. The method can be applied to many other nonlinear oscillators.
Acknowledgment

The work was supported by the Program for New Century Excellent Talents in the University.

References