Microarticle

The simplest approach to nonlinear oscillators

Ji-Huan Hea,b,*

a School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China

b National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren Ai Road, Suzhou 215123, China

ARTICLE INFO

Keywords:
Frequency formulation
Duffing oscillator
Nonlinear conservative oscillator

ABSTRACT

This paper gives the simplest approach to the cubic-quintic Duffing equation (M.S.H. Chowdhury et al., Results in Physics 7 (2017) 3962–3967), providing an extremely fast and relatively accurate estimation of the frequency of a nonlinear conservative oscillator.

Recently Chowdhury et al. studied the following cubic-quintic Duffing oscillator

\begin{equation}
 x'' + x + x^3 + x^5 = 0, \quad x(0) = A, \quad x'(0) = 0
\end{equation}

and obtained an approximate solution by the harmonic balance method [1]. This equation can be also solved by the variational iteration method [2], the homotopy perturbation method [3–5] and the Taylor series method [6]. Here we show the frequency of Eq. (1) can be effectively solved by a one-step frequency formulation [7].

Consider the following general nonlinear oscillator

\begin{equation}
 x'' + f(x) = 0, \quad x(0) = A, \quad x'(0) = 0
\end{equation}

The square of its frequency can be expressed as [7]

\begin{equation}
 \omega^2 = \frac{df(x)}{dx} \Big|_{x=A/2}
\end{equation}

For the cubic-quintic Duffing oscillator, \(f(x) = x + x^3 + x^5 \), the frequency can be obtained immediately:

\begin{equation}
 \omega = \sqrt{(1 + 3x^2 + 5x^4)}|_{x=A/2} = \sqrt{1 + \frac{3}{4}A^2 + \frac{5}{16}A^4}
\end{equation}

This approximate frequency gives good accuracy for small \(A \), as shown in Table 1, and its relative error is about 25% when \(A \) tends to

<table>
<thead>
<tr>
<th>A</th>
<th>Exact frequency</th>
<th>Eq. (5)</th>
<th>Relative Error of Eq. (5), %</th>
<th>Eq. (4)</th>
<th>Relative Error of Eq. (4), %</th>
<th>Ref. [8]</th>
<th>Relative Error of [8], %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.003770</td>
<td>1.004167</td>
<td>0.0396</td>
<td>1.003759</td>
<td>0.001095</td>
<td>1.00378</td>
<td>0.00028542</td>
</tr>
<tr>
<td>0.3</td>
<td>1.03554</td>
<td>1.038699</td>
<td>0.3051</td>
<td>1.034423</td>
<td>0.017866</td>
<td>1.03577</td>
<td>0.0226135</td>
</tr>
<tr>
<td>0.5</td>
<td>1.10654</td>
<td>1.113492</td>
<td>0.6283</td>
<td>1.098649</td>
<td>0.071323</td>
<td>1.10835</td>
<td>0.063512</td>
</tr>
<tr>
<td>1</td>
<td>1.152359</td>
<td>1.371781</td>
<td>9.639</td>
<td>1.361400</td>
<td>5.73667</td>
<td>1.54847</td>
<td>1.63324</td>
</tr>
<tr>
<td>3</td>
<td>7.26863</td>
<td>7.100317</td>
<td>2.3156</td>
<td>7.575000</td>
<td>20.89284</td>
<td>7.72648</td>
<td>6.29895</td>
</tr>
<tr>
<td>8</td>
<td>48.2946</td>
<td>46.638686</td>
<td>3.8060</td>
<td>36.455452</td>
<td>24.51634</td>
<td>51.7378</td>
<td>7.12965</td>
</tr>
<tr>
<td>10</td>
<td>75.1774</td>
<td>72.541942</td>
<td>3.5057</td>
<td>56.577381</td>
<td>24.741503</td>
<td>80.572</td>
<td>7.17588</td>
</tr>
<tr>
<td>20</td>
<td>299.223</td>
<td>288.42041</td>
<td>3.6102</td>
<td>224.278844</td>
<td>25.04255</td>
<td>320.877</td>
<td>7.23675</td>
</tr>
<tr>
<td>50</td>
<td>1867.57</td>
<td>1799.5928</td>
<td>3.6400</td>
<td>1398.213503</td>
<td>25.131936</td>
<td>2003.04</td>
<td>7.25363</td>
</tr>
<tr>
<td>70</td>
<td>3659.98</td>
<td>3526.6480</td>
<td>3.6429</td>
<td>2739.845190</td>
<td>25.140187</td>
<td>3925.51</td>
<td>7.25252</td>
</tr>
<tr>
<td>100</td>
<td>7468.83</td>
<td>7196.6405</td>
<td>3.6443</td>
<td>5590.84013</td>
<td>25.144356</td>
<td>8010.77</td>
<td>7.25603</td>
</tr>
<tr>
<td>300</td>
<td>67215.57</td>
<td>6476.1500</td>
<td>3.6456</td>
<td>150312.20002</td>
<td>25.147993</td>
<td>72093.2</td>
<td>7.25674</td>
</tr>
<tr>
<td>500</td>
<td>186709.04</td>
<td>179902.17</td>
<td>3.6457</td>
<td>139754.9194</td>
<td>25.148285</td>
<td>200258.0</td>
<td>7.25684</td>
</tr>
<tr>
<td>700</td>
<td>365949.25</td>
<td>352607.70</td>
<td>3.6457</td>
<td>273918.9981</td>
<td>25.148365</td>
<td>392506.0</td>
<td>7.25682</td>
</tr>
<tr>
<td>1000</td>
<td>746834.69</td>
<td>719606.95</td>
<td>3.6458</td>
<td>559017.6652</td>
<td>25.148408</td>
<td>801031.0</td>
<td>7.25682</td>
</tr>
</tbody>
</table>

* Address: School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China.

E-mail address: hejihuan@suda.edu.cn.

https://doi.org/10.1016/j.rinp.2019.102546

Received 22 June 2019; Received in revised form 25 July 2019; Accepted 29 July 2019

Available online 03 August 2019

2211-3797/ © 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
infinite. In order to improve its accuracy, we can use more location points in stead of \(x = 0.5A \), and its average value is used, for example

\[
\omega = \frac{1}{3} \left(\frac{df(x)}{dx} \right)_{x=0.34} + \frac{df(x)}{dx} \bigg|_{x=0.54} + \frac{df(x)}{dx} \bigg|_{x=0.74}
\]

\[
= \sqrt{1 + 0.83A^2 + 0.51783A^4}
\]

Eq. (5) gives a good accuracy for both small \(A \) and large \(A \), the relative error is less than 4% when \(A = 1000 \), see Table 1.

To be concluded, this paper suggests a simple but effective approach to nonlinear oscillator for fast insight into its basic property. The method can also extend to fractal oscillators [9,10] and the variational approach to nonlinear oscillators [11,12].

Acknowledgement

The Table 1 was calculated by the reviewer, Prof. Dr. Najeeb Alam Khan. The author does appreciate his kind help and his precious time.

References

