Phase Behavior of Amphiphilic Diblock Co-oligomers with Nonionic and Ionic Hydrophilic Groups

Thumbnail Image
Date
2013-03-14
Authors
Heinen, Jennifer
Blom, Annabelle
Hawkett, Brian
Warr, Gregory
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heinen, Jennifer
Teaching Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

The synthesis of a series of co-oligomer amphiphiles by RAFT and their self-assembly behavior in water is described. These novel amphiphiles, comprised of styrene, butyl acrylate, and alkyl hydrophobes together with ionic acrylic acid and nonionic hydroxyethylacrylate hydrophilic moieties and with a total degree of polymerization from 5 to 17, represent a new class of small-molecule surfactants that can be formed from the immense potential library of all polymerizable monomers. Examples of micellar solutions and discrete cubic, hexagonal, lamellar, and inverted hexagonal lyotropic phases, as well as vesicle dispersions and coexisting lamellar phases, are reported and characterized by small-angle scattering. The variation of self-assembly structure with co-oligomer composition, concentration, and solution conditions is interpreted by analogy with the surfactant packing parameter used for conventional small-molecule amphiphile

Comments

Reprinted with permission from The Journal of Physical Chemistry B 117 (2013): 3005–3018, doi:10.1021/jp307875z. Copyright 2013 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections