Skip to main content
Article
Boron Isotopes in Boninites Document Rapid Changes in Slab Inputs during Subduction Initiation
Nature Communications
  • Hong-Yan Li, Guangzhou Institute of Geochemistry
  • Xiang Li, Guangzhou Institute of Geochemistry
  • Jeffrey G. Ryan, University of South Florida
  • Chao Zhang, Northwest University
  • Yi-Gang Xu, Guangzhou Institute of Geochemistry
Document Type
Article
Publication Date
1-1-2022
Digital Object Identifier (DOI)
https://doi.org/10.1038/s41467-022-28637-6
Disciplines
Abstract

How subduction-related magmatism starts at convergent plate margins is still poorly understood. Here we show that boron isotope variations in early-formed boninites from the Izu-Bonin arc, combined with radiogenic isotopes and elemental ratios document rapid (~0.5 to 1 Myr) changes in the sources and makeup of slab inputs as subduction begins. Heterogeneous hornblende-granulite facies melts from ocean crust gabbros ± basalts fluxed early melting to generate low silica boninites. Hydrous fluids from slab sediments and basalts later fluxed the low silica boninites mantle source to produce high silica boninites. Our results suggest that initially the uppermost parts of the slab were accreted near the nascent trench, perhaps related to early low-angle subduction. The rapid changes in slab inputs recorded in the boninites entail a steepening subduction angle and cooling of the plate interface, allowing for subduction of slab sediment and basalt, and generating hydrous fluids at lower slab temperatures.

Rights Information
Creative Commons Attribution 4.0
Citation / Publisher Attribution

Nature Communications, v. 13, art. 993

Citation Information
Hong-Yan Li, Xiang Li, Jeffrey G. Ryan, Chao Zhang, et al.. "Boron Isotopes in Boninites Document Rapid Changes in Slab Inputs during Subduction Initiation" Nature Communications Vol. 13 (2022)
Available at: http://works.bepress.com/jeffrey_ryan/105/