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ABSTRACT. We develop an a posteriori error estimate of hierarchical type for
Dirichlet eigenvalue problems of the form (—A 4+ (¢/r)2)y = M) on bounded
domains Q, where r is the distance to the origin, which is assumed to be in Q.
This error estimate is proven to be asymptotically identical to the eigenvalue
approximation error on a family of geometrically-graded meshes. Numerical
experiments demonstrate this asymptotic exactness in practice.

1. Introduction. We consider the eigenvalue problem

62
—A¢+T—2¢:/\¢, (1)

in a bounded domain Q C R? with the Dirichlet boundary condition ¢|sq = 0,
where ¢ > 0 and r = |z| is the distance to the origin, which is assumed to be in .
This eigenvalue problem is associated with the Schrodinger equation

2
c
—Au—i—r—Qu:f, (2)

with the Dirichlet boundary condition u|sq = 0. For simplicity of the theory, we
assume that c is constant, and that 2 is a polygon. However, we will also consider
non-polygonal domains in the examples as well as in the experiments throughout the
paper, to which our results extend. In fact, our analysis can also deal with certain
type of non-constant functions ¢ possessing multiple inverse-square singularities, as
in [15].

The eigenvalue problem (1) with the inverse-square, or centrifugal, potential
(¢/r)? is of importance in quantum mechanics (for example cf. [11,12,23,28]). This
potential presents the same “differential order” as the Laplacian near the origin,
as is apparent when the Laplacian is expressed in polar coordinates. The strong

2010 Mathematics Subject Classification. Primary: 65N30, 65N25; Secondary: 65N15, 65N50.

Key words and phrases. Eigenvalue problems, Schrodinger operator, finite elements, error es-
timation, asymptotic exactness.

H. Li was partially supported by the NSF Grants DMS-1158839 and DMS-1418853. J.S. Ovall
was partially supported by the NSF Grant DMS-1414365.

1377


http://dx.doi.org/10.3934/dcdsb.2015.20.1377

1378 HENGGUANG LI AND JEFFREY S. OVALL
singularity r =2 in the potential generally causes singular behavior (unbounded gra-
dient) in the solution of (2) as well as in some of the eigenfunctions of (1). In
addition to the singular potential, the geometry (smoothness) of the domain and
boundary conditions may also play a critical role in determining the regularity of
the solution. Therefore, new analytical tools, different from techniques for standard
elliptic operators with bounded coefficients, are needed to develop well-posedness
and regularity results, as well as effective numerical algorithms for (2) and (1).
For Schrodinger operators with similar singular potentials, the analysis is generally
carried out in Sobolev spaces with special weights, instead of in the usual Sobolev
space H™ (for example, see [10,11,15,21,22] and references therein). In particular,
based on the weighted estimates, effective finite element methods associated with a
class of graded meshes were proposed in [21] to approximate singular solutions of
the Schrodinger equation at the optimal rate. An a posteriori error estimate of hier-
archical type for these optimal finite element algorithms was developed in [22], and
it provides a practical stopping criterion for approximating the solution of (2). The
present paper builds on this work, adapting it to eigenvalue problems. We prove,
and then numerically demonstrate, that our cheaply-computable error estimate is
asymptotically identical to the error in our eigenvalue approximation, independent
of singularities present in the eigenfunctions or whether the eigenvalues are degen-
erate.

Finite element methods for elliptic eigenvalue problems are nearly as old those
for the associated boundary value problems, so there is a rich literature, and basic
analysis is well-developed, at least for standard second-order elliptic operators. We
do not attempt a comprehensive overview of the relevant literature, but merely cite
two classic references for the basic theory, [3,25], and mention some three recent
papers concerning a posteriori error estimates for lower-order methods which might
be most readily compared to our own, [6,7,24]. In both [24] and [6], eigenvalue
error estimates are developed for standard elliptic operators. These are proven to
asymptotically exact under certain assumptions on mesh structure and smoothness
of the eigenfunctions. Non-self-adjoint problems having real eigenvalues are also
considered in [24]. The work [6] employs hierarchical bases for error estimation,
in the same manner as we do here, but the effectivity analysis for boundary value
problems is quite different from ours, as is the theoretical bridge between boundary
value problems and eigenvalue problems—which is done here via a key identity
(Lemma 3.1). A certain class of non-linear eigenvalue problems, also relevant in
certain quantum physical applications, is considered in [7]. Asymptotic exactness
of the eigenvalue errors is not considered in [7], and cannot be achieved for the
type of error estimates used, but the important issue of proving convergence of the
associated adaptive method is addressed.

The rest of the paper is organized as follows. In Section 2, we define the weighted
Sobolev spaces used in the analysis of [21,22], state key regularity results, and
present basic eigenvalue theory for (1). Two examples are presented to provide some
intuition about these eigenvalue problems, and one of these is revisited explicitly in
the experiments. In Section 3, we first formulate the finite element approximation
of the eigenvalue problem on graded meshes (Definition 3.2). Then, using finite
element analysis in weighted spaces, we prove the exactness of our a posteriori error
estimate in Theorem 3.4, our main result. In Section 4, we report numerical tests
for different domains with different singular eigenfunctions. These tests confirm our
theoretical prediction on the effectivity of the a posteriori estimate.
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2. Basic definitions and results. Throughout, we use the following notation for
the L?-inner-product and norm,

(u,v) = /Q w o, ul = Vww) . 3)

For multi-indices o = (a1,a2) € N3, we employ the standard conventions |a| =
lol

the corners of Q. These are the points at which one might expect an eigenfunction

of (1) to have an unbounded gradient (cf. [1,2,4,8,13,14,16-18,20,27]). For z € ,

let p(z) be the distance between z and (). We define the following weighted Sobolev

spaces and their corresponding norms

a1 + ag, and for v = v(xy,x9) 0% = Let @ consist of the origin and

K = {ve L*Q): pl*l=29% e L2(Q) for all |a| < m} , (4)
1/2 1/2
olen = | D o™ 0% ol = D PR - )
laf=m jal<m

We note that K3 = L?(2). Letting
H={veKi: v=0on0dQ in the trace sense} , (6)

we define the following bilinear form on H,

2
B(u,v)z/Vu-Vv—l—c—zuv, (7)
o) r

and note that it is, in fact, an inner-product. We denote the induced norm by || - ||.
It can be shown (cf. [22]) that

Lemma 2.1. The norms || - || and || - ||x: are equivalent on H.
With these definitions in hand, the variational form of our eigenvalue problem is
given by
Find (X, ¢) € Ry x (H\ {0}) such that B(¢,v) = A(p,v) forallve H . (8)

We will refer to a solution (A, ¢) of (8) as an eigenpair of B on #, with eigenva-
lue A and eigenfunction ¢. Before stating a few basic facts about the eigenvalue
problem (8), we introduce a related family of boundary value problems

Given f € L*(Q) find u(f) € H such that B(u(f),v) = (f,v) forallv e H, (9)

and remark on their well-posedness. Lemma 2.1 leads to the well-posedness of (9)
in H by the Riesz Representation Theorem.

A stronger regularity result is proven for the boundary value problem (9) in [21,
Theorem 3.3]:

Theorem 2.2. There is a constant n > 0 depending only on  and the constant
¢ >0 in (7) such that, for any f € K"7', where m € Ny and |a| < 1, we have

a—1

u(f) € ICZfll. More specifically, it holds that
u(Pllemss < Cllfllgn-s (10)

where C' depends on m and a, but not on f.
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Let K : L*(Q2) — L?(Q) be the solution operator associated with (9), i.e. Kf =
u(f). Theorem 2.2 implies that K is bounded. The fact that H{(f2) is compactly
embedded in L?(Q) easily implies that H C H{(2) is compactly embedded in
L?(Q), because any bounded sequence in H is clearly bounded in Hg () as well.
Therefore, K is a self-adjoint compact operator on L?(2), and we have the following
basic results for the eigenvalue problem associated with its inverse — the operator
defined by the bilinear form B on H:

1. The eigenvalues of (8) form a sequence of positive numbers with no finite
accumulation points. We will assume that they are ordered

O< A <A< A3 <t
2. It is possible to choose a corresponding sequence of eigenfunctions ¢, i.e.
B(¢n,v) = Ap(@n,v) for all v € H, such that (¢;,¢;) = 0;;. Furthermore
these eigenfunctions form a Hilbert basis for L2().
3. There is a min-max variational characterization of the eigenvalues
2
An = min max ol

SCH wes ]2
dim(S)=n v#0

Such results are standard for symmetric elliptic problems with L coefficients.
Given an eigenvalue A\, we denote its invariant subspace by

EN)={¢YeH: B(y,v) =A¢,v) for all v € H} . (11)

In other words, E(A) consists of all the eigenfunctions associated with A, as well
as the zero function. As indicated above by the non-strict inequalities A; < A;41,
eigenvalues may be degenerate, having geometric multiplicity dim E(\) > 1.

For bounded domains, it is straight-forward to see that 7' C Ky if b < a.
Let n = n(f,¢) be as in Theorem 2.2, and choose |a|] < 1. Let (A, ¢) be an
eigenpair of (8). Since ¢ € L*(Q) = KJ C K2_;, Theorem 2.2 guarantees that

u(Ap) = Mu(¢) = ¢ € K2, C K2_,. By induction, ¢ € K27, for all n € N. But
K2, C K., for any j < 2n. We therefore have the following corollary.

Corollary 1. There is a constant n > 0 depending only on ) and the constant ¢ > 0
in (7) such that, for any |a| < n and any eigenfunction ¢, it holds that ¢ € Ky,
for all n > 0; more briefly, ¢ € K35 ;.

We close this section with two examples which help provide some intuition about
these eigenvalue problems—particularly the types of singularities which can occur
in the eigenfunctions.

Example 1. Suppose 2 is the unit disk, » < 1. Expressing the eigenvalue problem
in polar coordinates and using separation-of-variables, we find the eigenvalues A,
and corresponding invariant subspaces E(Apy) for n > 0 and m > 1: A\, =
[jm(gn)]Qa

E(Amn) = span{Jo, (jm(on) 1) cos(nb) , Jo, (jm(os) ) sin(nd)} ,

where j,,(v) is the m!" positive root of the first-kind Bessel function .J,(z), and
on = vVn? + ¢2. When n = 0 these subspaces are one-dimensional. These formulas
hold for ¢ > 0, but we will primarily be interested in the case ¢ € (0,1).

Since J,(z) ~ #:H) as z — 0, eigenfunctions in E(\;,0) have asymptotic
behavior ¢ near the origin for this problem, so the gradient will be unbounded at
the origin if ¢ € (0,1). If n > 1, the gradient of an eigenfunction in F(\,,,) vanishes
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A
9.8696044010893586188
15.920513426475879895
27.181727337203603368
39.478417604357434475
41.354888262245568479

W o N = O3S

A
11.394747278578650551
16.823380260414901268
27.799823099432368260
41.856135733780468863
42.644242596364950600

TABLE 1. The smallest eight eigenvalues for the unit disk problem,
Example 1, listed together with their indices and multiplicities:
¢=1/2 (top) and ¢ = 2/3.

[\D»—l}—ln—\»—s

S wWwWN = OIS

at the origin. Determining the location in the spectrum of all eigenfunctions having
a specific regularity is untenable as it would require knowledge of the interlacing of
roots of the Bessel functions J,,. However, a couple of specific instances will shed
light on typical behavior. Table 1 gives the smallest eight eigenvalues (counting
multiplicities) for this problem when ¢ = 1/2 and ¢ = 2/3. These eigenvalues are
correct in all digits shown, up to rounding in the last digit.

Example 2. Fixing a > 1/2, suppose {2 is the sector of the unit disk, with r» < 1
and 0 < 6 < 7/a, where 6 is the opening angle of the sector. The limiting case
« = 1/2 represents the unit disk with the positive z-axis removed. As before, we find
the eigenvalues A, and corresponding invariant subspaces F(A,,,) for m,n > 1,

A, = [jm(on)]2 » E(Amn) =span{J,, (jm(on) r)sin(nad)} ,

where and o, = \/(na)? + ¢2. Again, these formulas hold for ¢ > 0, and the case
¢ = 0 (the Laplace eigenvalue problem) illustrates the type of singularities which
can occur solely because of re-entrant corners, i.e. o < 1. We provide the first eight
eigenvalues for ¢ = 0, with a = 1/2 (slit disk) and « = 2/3 (L-shape) in Table 2.

3. Discretization and error estimation. In this section, we consider the finite
element approximation of solutions to the eigenvalue problem (8), with focus on
the estimation of error in the computed eigenvalue approximations. Before getting
into the details of our finite element discretization, we make a few relevant claims
which hold more generally. We restrict our attention to finite dimensional subspaces
V' C H. The natural analogues of (8) and (9) are

Find (), ¢) € Ry x (V \ {0}) such that B(¢,v) = A (¢,v) forallv e V| (12)
Given f € L*(Q) find a(f) € V such that B(a(f),v) = (f,v) forallv € V. (13)
As before, we will refer to a solution (A, ) of (12) as an eigenpair of B on V,

with eigenvalue A and eigenfunction (;AS These discrete problems are well-posed by
basic linear algebra and by the coercivity of the bilinear form on V' (Lemma 2.1).
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A
9.8696044010893586188
14.681970642123893257
20.190728556426629975
26.374616427163390770
33.217461914268368860
39.478417604357434475
40.706465818200319742
48.831193643619198878

e e e k=
=
-+

N O = O WS
e e B

A mult
11.394747278578650551
18.278538262077375859
26.374616427163390770
35.642557845428184984
42.644242596364950600
46.052882654426898622
56.113114813020558488

57.582940903291124744

TABLE 2. The smallest eight eigenvalues for the unit sector prob-
lem, Example 2, listed together with their indices and multiplicities
for ¢ =0; a = 1/2 (top) and a = 2/3.

SN U W NS
e e B
e T Sy Sy ST

More specifically, if {vi,vs,...,vn} is a basis for V, then (12) is equivalent to the
generalized eigenvalue problem

Ax = S\MX s Qi3 = B('Uj,’l}i) s mi; = (’Uj, 'Ui) s (14)
where the matrices A = (a;;) and M = (m;;). The following analogues from the
continuous eigenvalue problem apply:

1. There are precisely N = dim(V) eigenvalues for the system (14), which we
take to be ordered as

D<A <A< ---<Ay.

2. It is possible to choose corresponding eigenfunctions b, ie. B(an,v) =
S\n(én, v) for all v € V, such that (QASZ', QASJ) = 0;;. These eigenfunctions clearly
form a Hilbert basis for V.

3. There is a min-max variational characterization of the eigenvalues

C Pl x! Ax
= min max = min max —— .
" scv  wves ||v||? SCR™ xeS xtMx
dim(S)=n v#0 dim(S)=n x#0

This characterization implies that An >\, forn < N.

Lemma 3.1. Suppose that (\,¢) is an eigenpair for B on H and (/\,(5) is an
eigenpair for B on V, with ||¢|| = ||¢|| = 1. Let ¢ = u(Agp). It holds that

A=A=16=0IP+ (A= [0 = d0)+ (b6 - )| +AG—do—3) . (15)
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Proof. Using the fact that ||¢|| = ||¢|| = 1, we first have the following identities,
o= l> = B¢~ .6 — ) = A+ 1 =200, 9) ,
Mg = 0l* = M6~ 6,6~ d) = A+ A= 2A(6,9) -
Subtracting these identities, we obtain the well-known error formula,
A=A=ll¢=3I* = All¢ - dII - (16)
Using the fact that B(¢,v) = A(¢,v) for all v € H, we further manipulate (16),
A=A=B(6~d.6-0) = No— 6,0 9)
= N80 —6) = B(6,6 = 6) = A&, 6 — 6) + M6 — 9)
Né,¢ =) = B(d,¢— 9) + ( N (.6~ 0)
=B(6~ 6,0~ 9)+ (A= 1)(6,6 )
=6 — ol + B(6— 6,6 — ) + ( X)(W —9)
=16 = II° + A(¢ — &, 6) — M —
from which (15) follows directly. O

%z
Qﬂ
§;>
’;
I
>
>
ASS

I
&

Our computed estimate of A— A will be based on approximating ||¢—a||2, treating
the rest of the bound in (15) as higher-order terms. To make this more precise, we
now shift to definitions of our finite element spaces, and a few key results.

Given a triangulation 7 of , let V be the vertex set (the vertices of all triangles),
which we assume includes all singular points (). We define the two spaces

V=V(T)={HNCWQ) :v|r €Py, VT € T}, (17)
W=W(T)={HNCQ):v|r €Py, VT € T and v(z) =0, Vz € V}. (18)

The space Py consists of polynomials of total degree k or less. We note that it is
necessary that v(0) = 0 for v € V. We will approximate the solution of (8) in the
space V and assess the error of this approximation in the space W.

Definition 3.2 (Graded Triangulations). Let 7 be a triangulation of Q whose
vertices include @, such that no triangle in 7 has more than one of its vertices in
Q. For k € (0,1/2], a k refinement of T, denoted by «(T), is obtained by dividing
each edge AB of T in two parts as follows:

e If neither A nor B is in @, then we divide AB into two equal parts.
e Otherwise, if say A is in @, we divide AB into AC and CB such that |AC| =
k|AB].
This will divide each triangle of 7 into four triangles. Figure 1 shows a triangle
having a singular vertex (the vertex on the top), together with three subsequent -
refinements, with k = 1/4. Given an initial triangulation 7o, the associated family
of graded triangulations {7, : n > 0} is defined recursively, T,+1 = &(Tp).

Remark 1. Although it may be useful in practice to have a different grading ratio
kq for each ¢ € (@), which is not difficult to implement, we do not pursue that
theoretical generality here.

Given a family {7,} of k-refined triangulations, we set V,, = V(7,,) and W,, =
W(T,), and u,(f) € V, is the solution of (13) on V,,. We see that dim(V,,) ~
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FIGURE 1. A triangle and three consecutive k-refinements towards
the top vertex, k = 1/4.

dim(W,,) ~ 4™, because each refinement increases the number of triangles by pre-
cisely a factor of 4. We also define ¢, (f) € W,, by

B(en(f),v) = (f,v) — B(un(f),v) for all v € W, . (19)
We collect two key results from [21,22].

Theorem 3.3. Let  be as in Theorem 2.2, and for 0 < a < min(n,1) choose
k=21 There is a constant C which is independent of f and n, such that

lulf) = un (A < C27" | fllxo_, (20)
lu(f) = un(f) = en(HI < C277" [ fllxz_, (21)

where the related numbers o > 1 and a < £ < min(2a,n,1) are also independent of
f and n.

Although we generally think of f as remaining fixed, these results allow for f to
vary with n, and we exploit this fact below. In what follows, we let {(Ax.n, Pr.n) :
1 <k < N = dim(V,)}, be eigenpairs for B on V,, with (¢in,¢jn) = 0i;, as
discussed at the beginning of this section; therefore, Ay, = S\k, Okn = qgk and
V =1V, for example.
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Corollary 2. Setting ¥ n = u( Ak nPr,n) and €kpn = en(Apndrn), and employing
the assumptions of Theorem 3.3, we have

lek,n - (bk,n

|||¢k,n - ¢k,n —€k,n

| <Chen27, (22)
| <ox/Zamm, (23)

where C' is independent of k and n.

Proof. Putting (20) in this context, we have

Ik = Genll < C27" Ak ndrnllce | < C27" A nl@rmllzz@) < CAppn 27" .
Similarly,
—on —on 3/2 5—on
1960 = bk — exmll < C277" [ Memdrnllcy | < C277 Mmlldrnll < e
This completes the proof. O

We emphasize that the computation of €, ,, involves solving the problem
B(ekn,v) = M@k n, ) — B(Pp.n,v) for all v e W, . (24)

Using the standard bases for V,, and W,,, it is shown in [22, Theorem 3.6] that the
condition number of the matrix associated with (24) is well-conditioned independent
of n. In fact, it is spectrally equivalent to its own diagonal. This makes (24) very
inexpensive to solve, particularly when compared with computing solutions to the
eigenvalue problem Ax = AMx on V,, where the stiffness matrix A is known to
have a condition number which grows like 4.

Suppose we fix k and consider the sequence of discrete eigenpairs {(Ag n, Grn) :
n > 0} for the Schrodinger operator with meshes appropriately graded near the
set @ (see Theorem 3.3). We do not rehearse standard finite element convergence
theory for eigenvalue problems (cf. [9, Section 3.3], [3]), but by the approximation
property given in Theorem 3.3, the following results for our eigenvalue problem can
be derived in a similar fashion:

e The approximate eigenvalues Ay ,, converge (down) to A, quadratically,
A < Akp With Mg, — A = 0(4_n) . (25)

o The distance between ¢y, ,, and the invariant subspace E(\g) associated with
Ak decreases linearly in the energy norm,

: _ -n

L o=l = 0@ - (26)

We emphasize that Ay may be a degenerate eigenvalue (repeated in the se-

quence of eigenvalues), so F(\) may have dimension greater than one. The

analogous statements on V,, hold as well. In light of this, it does not nec-

essarily make sense to say that {¢y, : n > 0} converges, even up to sign.

Nevertheless, we do have convergence in the sense of (26), and we refer to this

(loosely) as eigenvector “convergence”. We also remark that, although the

eigenfunction v € E()\;) which is nearest to ¢y, may not be of unit length,
but we do not lose (26) if we add this restriction.

In practice, the eigenvalue convergence is precisely quadratic, and the eigenvector
“convergence” is precisely linear on these properly graded meshes.
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We now reconsider the various terms in the error identity (15),
(

Mo = M = [0k = brnll? + Moo = M) [(Vrein = Phns Vh,n) + (B Vi — D)
+ Men(Vkon — ko Viin — Phn) -
Here we have taken vy, ,, = argmin{||v — ¢p | : v € E(Ag), |[v|| = 1}.
o We take the simple bound |[vg,n — Gk.nll < Cllvin — dunl = O277).
e Using a duality argument (L2-lifting, or Nitsche’s trick), we see that ||¢x n, —
st,nH = 0(47?1)-

e Finally, we note that
198, = Dkl = lernll? = Ik = Drnll = lern ) Nokn — Grnll + llennll)
< (Wrn = Drn — ernl) ok — drnll + lernll) = O+

Combining these pieces, we arrive at our key eigenvalue error theorem.

Theorem 3.4. Under the assumptions of Theorem 3.3, it holds that
| +0E4™™), (27)

for some constant T > 1. The hidden constant in O(4~™™) depends on Aj.

Men — M = ||€k.n

4. Numerical experiments. In this section we report the outcome of several
numerical experiments, to demonstrate how well the theory of previous sections—
particularly Theorem 3.4—are realized in practice. The data of interest are the
eigenvalue errors Ay, — Ak, their computed estimates |lex,[|?, and the associated
effectivities
Ak — Ak

lek.nll?
The software package PLTMG [5] was used for these experiments, with suitable
modifications for employing hierarchical basis error estimation and graded mesh
refinement, with ARPACK [19] in shift-and-invert mode as the algebraic eigenvalue
solver. In order reduce the width of tables of numerical data, we use the following
abbreviation of scientific notation, a x 10" < a,,. For example,

1.949 x 107% < 1.949_, .

EFF =

We first revisit the unit disk problem of Example 1, considering case ¢ = 1/2,
for which we know that the eigenfunctions associated with A\; =~ 9.86960440 and
¢ & 39.4784176 have an r'/? singularity (see Table 1). The grading ratio k =
0.2 was used for refinement. Note that by Theorem 3.3, the upper bound of the
grading parameter x near the origin is 2-1/(1/2) = 0.25 to achieve the optimal
convergence rate. Therefore, we have chosen an appropriate grading ratio here.
The data for these experiments are in Table 3. The eigenvalue convergence is seen
to be quadratic, i.e. linear in N = dim(V},), and the effectivities are very close 1.
The top row of data is absent for Ag because, on this coarse mesh, the approximate
eigenvalue 33.2876671 was actually (slightly) nearer to Ay = A5 & 27.1817273 than
to Ag. The effectivity of the error estimate when this was taken into account was
1.010.

We now consider the degenerate eigenvalue A = Ay = A3 =~ 15.9205134. The
corresponding invariant subspace (eigenspace) is spanned by

bo = Jo(VAr)cos(0) , é3=J,(VAr)sin(d) where o= ? ~ 1.11803 .
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N )‘1,71 — )\1 |||81’n||2 EFF )\Gm — >\6 |”56,n|”2 EFF
48 9.467_1 8.284_; 1.142

224 2.429_, 1907, 1.273 | 3.892,9 3.39540 1.146
961 5.690_o 4.594_, 1.238 | 9.629_; 8.450_; 1.139

3968 1.631_o 1.413_5 1.154 | 2.493_; 2.284_; 1.091
16129 3.957_3 3.605_3 1.098 | 6.182_5 5.898_5 1.048
65025 1.026_3 9.527_4 1.076 | 1.560_o 1.510_p 1.033
261121 | 2.637_4 2.469_4 1.068 | 3.929_53 3.844_5 1.022

TABLE 3. Data for the Unit Disk problem, corresponding to ap-
proximations of A\; and Ag on graded meshes with k = 0.2, c =1/2.

O U W N~ O S

Of course the ordering of ¢ and ¢3 is arbitrary, as is that particular choice of basis
for this invariant subspace. These functions are smooth enough to be optimally
approximated on a sequence of uniformly refined meshes, k = 0.5; for compari-
son, grading ratio k = 0.4 and K = 0.2 were used as well. On each mesh, two
approximate eigenvalues and eigenvectors were computed and error estimates for
both were computed. The results indicate that it really is irrelevant which of the
approximate eigenpairs is used to estimate error in the eigenvalue approximation, as
indicated by our theory. Since the code (PLTMG+ARPACK) assigns an order to
the approximate eigenpairs, we employ this order as well, (A2, $2.n); (A3 n, P3.n)-
The computed eigenvalues Az, and A3, agreed with each other to far more digits
than they agreed with Aa = A3, so the reported errors are identical. It is only the
error estimates, and hence effectivities, which are slightly different. In terms of the
grading, all three grading choices gave optimal order convergence, as the theory
predicts, with uniform refinement (k = 0.5) yielding the smallest errors and x = 0.2
yielding the largest errors. In terms of effectivities, uniform refinement was the
worst, followed in order by x = 0.4 and k = 0.2, though all were close to 1. To save
space, only the data for kK = 0.5 and x = 0.2 are reported in Table 4. In order to
demonstrate the “drift” in approximate eigenfunctions associated with degenerate
eigenvalues, we provide a sequence of contour plots for ¢2 ,, n = 1,2, 3,4 in Figure
2. The contour plots of ¢3, are essentially obtained by rotating the given plots
by 90 degrees. These plots illustrate the assertion in Section 3 that the sequence
{¢rn} may not converge, though the terms are getting successively closer to E(\y).

Finally, we turn to the L-shape domain Q = (—1,3)?\ [1,3)?. We consider the
case ¢ = 1/2, for which there will be eigenfunctions having an r'/2-singularity at the
origin and an r?/3-singularity at the point (1,1). We use the grading ratios x = 0.2
for triangles touching the origin, and x = 0.3 for triangles touching (1,1). Table 5
contains our approximations and error estimates for the first four eigenvalues. Con-
tour plots of the first four eigenfunctions are given in Figure 3. As an interesting
comparison, we also consider the case ¢ = 0, for which no singularity is present at
the origin, and grading is only needed near the point (1,1). The eigenvalues in this
case have been obtained elsewhere to very high accuracy [26] using a computational
very well-suited to the Laplacian, and we report their values here, rescaling them
by a factor of four due to the fact that our domain has four times the area of theirs:

2

A1~ 2.4099310 , Ay =~ 3.7993130, A3 = -5 4.9348022 , A4 = 7.3803703 . (28)
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n N )\Q’n — )\2 |||52,n||2 EFF >\3,n — )\3 |H€3’n|”2 EFF
0 48 1.01940 9.181_; 1.110 | 1.01949 9.181_; 1.110
1 224 2.544_41 2233, 1.139 | 2544, 2.197_; 1.158
2 961 6.371_9 5498_5 1.158 | 6.371_o 5.588_o 1.140
3 3968 1.596_5 1424 5 1.121 | 1.596_5 1.413_5 1.129
4 16129 3.997_3 3.562_3 1.122 | 3.997_3 3.576_3 1.118
5 65025 1.001_3 8987_, 1.114| 1.001_3 8.966_, 1.116
6 261121 | 2.506_, 2.250_4 1.113 | 2.506_4 2.250_4 1.113
n N Xn =2 le2nl® EFF | A3n—Xs lesnl> EFF
0 48 237149 236149 1.004 | 23719 236149 1.004
1 224 5.769_; 5.170_; 1.116 | 5.769_; 5.272_; 1.093
2 961 1.433_; 1.299_; 1.103 | 1.433_; 1.278_; 1.122
3 3968 3.576_o 3.311_, 1.080 | 3.576_o 3.282_, 1.090
4 16129 8.938_3 8.406_3 1.063 | 8.938_3 8.374_3 1.067
5 65025 | 2.234_5 2.117_; 1.055 | 2.234_5 2.114_3 1.057
6 261121 | 5.586_4 ©5.312_4 1.052 | 5.586_4 5.308_4 1.052

TABLE 4. Data for the Unit Disk problem, corresponding to ap-
proximations of Ag = Ag. Uniform refinement (top) and x = 0.2
graded refinement, ¢ = 1/2.

N Ma Neanl® [ dom Teanl® [ Asn Besnl® [ Adan leanl?
16 4416 1.32640 | 5.091 1.1634¢ | 8.044 2.135. | 11.00 3.1504¢
80 3.491 3.064_; | 4.212 2.682_; | 6.582 5.633_; | 8.488 7.348_,

353 3.251 7.477_9 | 4.005 6.746_5 | 6.128 1.387_; | 7.878 1.930_,
1472 3.194 2.126_5 | 3.953 1.730_5 | 6.024 4.031_5 | 7.723 5.063_»
6017 3.177 5.588_3 | 3.940 4.361_3 | 5.992 1.055_5 | 7.684 1.283_»
24321 | 3.173 1.488_3|3.937 1.094_3 | 5.984 2.813_3 | 7.674 3.242_3
97793 | 3.172 3.901_4 | 3.936 2.737_4 | 5.982 7.394_4 | 7.672 8.130_4
392192 | 3.172 1.024_4 | 3.936 6.855_5 | 5.982 1.949_4 | 7.671 2.035_4

TABLE 5. Data for the L-shape problem, corresponding to ap-
proximations of Ay through A4, k = 0.2 and k = 0.3 for different
singular points, ¢ = 1/2.

O U W~ O3

The second eigenfunctions for ¢ = 1/2 and ¢ = 0 are not linearly dependent, nor are
fourth eigenfunctions for both ¢ = 1/2 and ¢ = 0. Their contour plots are merely
very similar, though not identical.
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