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Abstract A posteriori error estimators based on auxiliary subspace techniques for second
order elliptic problems in R

d (d ≥ 2) are considered. In this approach, the solution of a
global problem is utilized as the error estimator. As the continuity and coercivity of the
problem trivially leads to an efficiency bound, the main focus of this paper is to derive an
analogous effectivity bound and to determine the computational complexity of the auxiliary
approximation problem. With a carefully chosen auxiliary subspace, we prove that the error
is bounded above by the error estimate up to oscillation terms. In addition, we show that
the stiffness matrix of the auxiliary problem is spectrally equivalent to its diagonal. Several
numerical experiments are presented verifying the theoretical results.

Keywords Finite element methods · A posteriori error estimation · High-order methods

1 Introduction

A posteriori error estimation and adaptive mesh refinement have become essential compo-
nents of high-performace scientific computing using finite elements. One class ofmethods for
estimating error that has proven to be very robust in practice is the so-called hierarchical basis
approach, whose origins can be traced back to [16,17,39]. In this approach, given a finite
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element approximation û ∈ V of the solution u, an approximate error function ε ≈ u − û is
computed in a finite dimensional auxiliary space W satisfying V ∩ W = {0}. A global error
estimate is obtained by measuring ε in an appropriate norm, and local norms of ε are used as
local error indicators to drive an adaptive algorithm. Hierarchical basis methods belong to the
broader class of implicit methods, which require the solution of additional, simpler (local or
global) systems to obtain an error estimate. We note that “hierarchical basis error estimation”
has occassionally been used to describe a class of explicit methods that bear some superficial
similarities with what is considered here (cf. [25,35]). Such methods can be shown to be
equivalent to the standard residual method, whereas hierarchical methods as discussed here
cannot, in general.

Traditionally (cf. [2,5,8,38]) hierarchical basis estimators have been analyzed for self-
adjoint, coercive problems, with error measured in the induced “energy” norm ||| · |||. In such
cases, ε is the orthogonal projection of the error u − û onto the space W , so one clearly has
the efficiency bound |||ε||| ≤ |||u − û|||. A complementary reliability bound, |||u − û||| ≤ C |||ε|||,
is then obtained by exploiting a Strong Cauchy Inequality (cf. [19]) between the spaces V
andW , and making a saturation assumption—i.e. that the best approximation of u in V ⊕W
is strictly better than its best approximation in V . Although the saturation assumption is
generally expected to hold on sufficiently finemeshes for problems likely to be encountered in
practice, it is not difficult to construct counter-examples (cf. [12,18]) for particular problems
on particular meshes. In [12,18], notions of data oscillation are used to replace the saturation
assumption with a quantity that is directly measurable, even it if is not generally measured
in practice. A related notion of oscillation appears explicitly in the reliability bound of the
present work.

The contributions [3,12,22,28] provide a representative sample of more recent work in
the area, considering such issues as non-self-adjoint problems and asymptotic exactness of
error estimates, primarily for lower-order elements. Here, we focus on higher-order elements
on meshes in R

d , and our choice of auxiliary space W becomes more obviously different
from what would be considered a standard choice when d ≥ 3. To clarify, W is typically
chosen so that V ⊕ W is a natural approximation space—for example, if V is the Lagrange
space having local polynomial degree p, V ⊕W might be the space having local polynomial
degree > p (a p-hierarchy), or the space having local polynomial degree p on a refinement
of the mesh used for V (an h-hierarchy). Our choice of W differs, and is motivated by the
fact that finite element errors may be decomposed in terms of residuals on mesh cells and
their (d − 1)-dimensional interfaces, so W should be designed such that it can adequately
“capture” these components of the error.

1.1 Problem Statement and Background

Let � ⊂ R
d (d ≥ 2) be a bounded polytope, having boundary ∂� = �N ∪ �D , a disjoint

union with �D closed in the relative topology on ∂�. We define the space

H1
0,D(�) = {v ∈ H1(�) : v = 0 on �D in the sense of trace},

and adopt the following notation for norms and semi-norms on Hilbert spaces Hk(ω) (k ≥ 0)
for ω ⊂ �,

‖v‖2k,ω =
∑

|α|≤k

‖Dαv‖2L2(ω)
, |v|2k,ω =

∑

|α|=k

‖Dαv‖2L2(ω)
.

Whenω = �, we omit it from the subscript.We also employ these Sobolev spaces and norms
on subsets of � having lower dimension.
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We consider variational problems of the form

Find u ∈ H1
0,D(�) �:

∫

�

A∇u · ∇v + (b · ∇u + cu)v

︸ ︷︷ ︸
B(u,v)

=
∫

�

f v +
∫

�N

gv

︸ ︷︷ ︸
F(v)

∀v ∈ H1
0,D(�),

(1.1)

where the data A : � → R
d×d , b : � → R

d , c, f : � → R and g : �N → R are
piecewise smooth with respect to some polyhedral partition of�. The matrix A is symmetric
and uniformly positive definite a.e. in �, A(x)z · z ≥ α|z|2 for all z ∈ R

d and a.e. x ∈ �.
We further assume conditions on the coefficients so that B is continuous and coercive,

|B(v,w)| ≤ C‖v‖1‖w‖1, B(v, v) ≥ c‖v‖21 for all v,w ∈ H1
0,D(�). (1.2)

Under these assumptions, the problem (1.1) is well-posed. We refer to C and c, respectively,
as the continuity constant and the coercivity constant.

Remark 1.1 The coercivity assumption is convenient for our analysis, but it is not essential
for our key efficiency and reliability result, Theorem 1.4. That theorem holds, as stated, if
we instead have standard inf-sup conditions, (cf. [20, Theorem 2.6]) on the space H1

0,D(�)

and the discrete spaces V and W described below, with common inf-sup constant c. How-
ever, coercivity is used in an essential way in the proof of our spectral equivalence result,
Theorem 1.5.

Given a family {T } of conforming, shape-regular simplicial partitions of �, we define the
standard piecewise polynomial finite element spaces on T :

V = Vp = {v ∈ H1
0,D(�) : v|T ∈ Pp(T ) for each T ∈ T }, (1.3)

where Pp(T ) is the space of polynomials of total degree ≤ p on T . More generally Pp(S)

is taken to be the space of polynomials of total degree ≤ p having domain S ⊂ R
j for some

0 ≤ j ≤ d . Given a finite dimensional space W ⊂ H1
0,D(�) such that V ∩ W = {0}, we

consider the approximation problem

Find û ∈ V �: B(û, v) = F(v) (= B(u, v)) ∀v ∈ V, (1.4)

and the error problem

Find ε ∈ W �: B(ε, v) = F(v) − B(û, v)
(= B(u − û, v)

) ∀v ∈ W. (1.5)

Since V and W inherit the continuity and coercivity of B, these problems are also well-
posed. In the present work, W is also a piecewise polynomial space with respect to T , but
we postpone its definition to later sections. Throughout, we implicitly assume that T is
subordinate to the polyhedral partition of � on which the data is piecewise smooth—i.e., the
data is smooth on each simplex T ∈ T .

1.2 Main Results

In order to describe our basic approach to constructing and analyzing ε, we introduce some
basic notation. Let F denote the set of (d − 1)-dimensional subsimplices, the “faces” of T ,
and further decompose this as F = FI ∪ FD ∪ FN , where FI comprises those faces in the
interior of �, and FD and FN comprise those faces in �D and �N , respectively. The starting
point of our analysis is the error identity in Proposition 1.2, which follows directly from (1.4)
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and (1.5) and elementwise integration-by-parts as used in the derivation of residual methods.
More specifically, for φ ∈ H1

0,D(�), B(u − û, φ) = F(φ) − B(û, φ), so

B(u − û, φ) =
∑

T∈T

∫

T
( f − b · ∇û + cû)φ − A∇û · ∇φ +

∑

F∈FN

∫

F
gφ

=
∑

T∈T

(∫

T
( f − (−∇ · A∇û + b · ∇û + cû))φ −

∫

∂T
A∇û · nφ

)

+
∑

F∈FN

∫

F
gφ.

Distributing the integrals on ∂T to the faces F ∈ FI ∪ FN , we obtain

Proposition 1.2 For any v ∈ H1
0,D(�), w ∈ W and v̂ ∈ V , it holds that

B(u − û, v) = B(ε, w) + R(v − v̂ − w),

where

R(φ) = F(φ) − B(û, φ) =
∑

T∈T

∫

T
RTφ +

∑

F∈FI∪FN

∫

F
rFφ,

and

RT = f − (−∇ · A∇û + b · ∇û + cû)|T ,

rF =
{
g − A∇û · n, F ∈ FN

(−A∇û · nT )|T − (A∇û · nT ′)|T ′ , F ∈ FI
.

Here, T and T ′ are the simplices sharing the face F, and nT and nT ′ are their outward unit
normals; for F ∈ FN , the outward normal to n for ∂� is used.

Remark 1.3 The identity B(u− û, v) = R(v− v̂) for v ∈ H1
0,D(�) and v̂ ∈ V is the starting

point for residual error estimates, which are obtained by choosing v̂ to be a suitable interpolant
of v, and deriving corresponding bounds on the weak residual, |R(v − v̂)| ≤ Cη‖v‖1. Here
η is comprised of appropriate weights, involving the local mesh size, on the volumetric and
face residuals, ‖RT ‖0,T and ‖rF‖0,F . We note that reliability bounds for residual estimators
of this sort are very naturally obtained, and it is efficiency bounds, involving oscillation terms,
which require more ingenuity to establish. This is the opposite of the situation for the error
estimators discussed here.

With an appropriate choice of error spaceW = Wp+d , described in detail later, we obtain
our key error theorem, the upper bound of which is proved in Sect. 2.3—the lower bound is
a trivial consequence of the coercivity and continuity conditions (1.2).

Theorem 1.4 There is a constant C depending only on the dimension d, polynomial degree
p, continuity and coercivity constants C and c, and the shape-regularity of T such that

c

C
‖ε‖1 ≤ ‖u − û‖1 ≤ C (‖ε‖1 + osc(R, r, T )) ,

where the residual oscillation is defined by

osc(R, r, T )2 =
∑

T∈T
h2T inf

κ∈Pp−1(T )
‖RT − κ‖20,T +

∑

F∈FI∪FN

hF inf
κ∈Pp−1(F)

‖rF − κ‖20,F .

Here and following, hT is the diameter of T and hF is the diameter of F.
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The space Wp+d will be spanned by appropriate “face bubble functions” supported in the
two (or one) simplices sharing a face, and “interior bubble functions” supported in a simplex.
In [6,22] it was shown that interior bubbles are not needed for lowest order elements when
d = 2, 3. A very different sort of analysis was used in [26,28] for lowest order elements and
d = 2 to show that the (H1 or energy) error estimates based on ε are often asymptotically
identical to the actual error.

As stated, the computation of ε requires the formation and solution of a global system, so
one might naturally be concerned that the approach is too expensive for practical considera-
tion. However, even those implicit methods that are based on the solution local (elementwise
or patchwise) problems require the computation of local stiffness matrices. In Sect. 3 we
argue that the size and sparsity structure of the system for computing ε is comparable to that
of setting up all of the local systems for other implicit methods. So when comparing the cost
of this and other implicit methods, the real issue is whether or not it is more expensive to
solve a single global system or a collection of local systems. Our key result in this regard is

Theorem 1.5 The global stiffness matrix for Wp+d is spectrally-equivalent to its diagonal.

Although this result implies that we could get away with solving a diagonal system, and that
themodified ε̃would still provide two-sided bounds as in Theorem 1.4, with suitably adjusted
constants, we instead advocate approximately solving the full system using a few steps of a
Krylov solver (CG, BiCG-Stab, GMRES) either with no preconditioning (e.g. when d = 2)
or a simple Jacobi or Gauss-Seidel preconditioner.

We offer a few more remarks concerning the solution of local or global problems in the
construction of error estimates. An approximate error function ε ≈ u − û is very natu-
rally obtained through the solution of the global problem (1.5), and can be used for driving
anisotropic h-refinement or r -refinement (mesh smoothing) in practice. We note, however,
that our analysis implicitly assumes isotropic meshes, though some of our experiments use
elements with high aspect ratios. Although local problems might also be used do drive
anisotropic refinement, empirical evidence [23,24] suggests that the solution of global prob-
lems are better suited for this purpose. A point in which some approaches based on local
problems currently have a theoretical advantage over the approach presented here is that they
are provably robust with respect to polynomial degree [13,21], a property which is known
not to hold for standard residual-based error estimates [27]. The efficiency (lower) bound in
Theorem 1.4 is clearly independent of the polynomial degree p, but the proof presented here
for the reliability bound suggests that the constant C could depend on p, which is not ideal.
Extensive numerical experiments, as reported in Sect. 4, provide empirical evidence that our
estimate is robust with respect to p, and we hope to prove this in future work.

Before outlining the rest of the paper, we finally provide some motivation for the devel-
opment in Sect. 2 by considering the residual oscillation term. We define the local residual
oscillation for each T ∈ T by

osc(R, r, T )2 = h2T inf
κ∈Pp−1(T )

‖RT − κ‖20,T + 1

2

∑

F∈FI,T

hF inf
κ∈Pp−1(F)

‖rF − κ‖20,F

+
∑

F∈FN ,T

hF inf
κ∈Pp−1(F)

‖rF − κ‖20,F ,

where FI,T are the faces of T in FI and FN ,T are the faces of T in FN . By definition,

osc(R, r, T )2 =
∑

T∈T
osc(R, r, T )2.
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The choice ofWp+d is such that, if the data is piecewise smooth (for example), then the local
oscillation is of higher order than the local best-approximation error:

osc(R, r, T )

infv∈Pp(T ) ‖u − v‖1,T → 0 as |T | → 0. (1.6)

This is illustrated more explicitly in the following example.

Example 1.6 Suppose that A and b are piecewise constant and c = 0. In this case it holds
that (−∇ · A∇û + b · ∇û)|T ∈ Pp−1(T ) and A∇û|T ∈ [Pp−1(T )]d , so we have

osc(R, r, T )2 = h2T inf
κ∈Pp−1(T )

‖ f − κ‖20,T +
∑

F∈FN ,T

hF inf
κ∈Pp−1(F)

‖g − κ‖20,F .

If f ∈ H p(T ) and g ∈ H p(F), then osc(R, r, T ) = O(h p+1/2
T ). If f ∈ H p(T ) and

g ∈ Pp−1(F), then osc(R, r, T ) = O(h p+1
T ). Finally, if f ∈ Pp−1(T ) and g ∈ Pp−1(F),

then osc(R, r, T ) = 0.

1.3 Outline of Paper

The rest of the paper is organized as follows. In Sect. 2 we provide additional notation, define
the auxiliary finite element spaceW , and state and prove some crucial properties of this space.
With these results established, we prove Theorem 1.4 in Sect. 2.3. In Sect. 3 we discuss the
computational complexity of the auxiliary problem, including the size and structure of the
resulting system as well as its spectral properties. The proof of Theorem 1.5 is presented here.
Finally, in Sect. 4, we give several numerical experiments verifying the theoretical results.

2 Reliability Analysis

2.1 Local and Global Polynomial Spaces for Estimating Error

Given a (non-degenerate) simplex T ⊂ R
d of diameter hT , we define S j (T ), 0 ≤ j ≤ d

to be the set of sub-simplices of T of dimension j ; its cardinality is |S j (T )| = (d+1
j+1

)
. We

denote by S j the set of sub-simplices of the triangulation of dimension j , and point out
the overlap of notation Sd−1 = FI ∪ FD ∪ FN and Sd = T . Recall that Pm(S) is the set
of polynomials of total degree ≤ m with domain S, and note that dimPm(S) = (m+ j

j

)
for

S ∈ S j (T ). Taking the vertices of T to be {z0, . . . , zd}; we let λi ∈ P1(R
d), 0 ≤ i ≤ d , be the

corresponding barycentric coordinates, uniquely defined by the relations λi (z j ) = δi j . We let
the face Fj ∈ Sd−1(T ) be the sub-simplex not containing z j , and n j be the outward-pointing
unit normal to Fj .

Definition 2.1 (Element and face bubbles) The fundamental element and face bubbles for
T are given by ( j = 0, 1, . . . , d)

bT =
d∏

k=0

λk ∈ Pd+1(T ), bFj =
d∏

k=0
k �= j

λk ∈ Pd(T ). (2.1)

We also define general volume and face bubbles of degree m,

Qm,T = {v = bTw ∈ Pm(T ) : w ∈ Pm−d−1(T )} (2.2)
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Qm,Fj = {v = bFj w ∈ Pm(T ) : w ∈ Pm−d(T )} � Qm,T . (2.3)

Here and below, we use the shorthand W1 �W2 = span{W1 \W2} for vector spaces W1 and
W2. So W1 � W2 is the largest subspace of W1 that has only 0 in common with W2.

The functions in Qm,T are precisely those in Pm(T ) that vanish on ∂T ; and the functions
in Qm,Fj are precisely those in Pm(T ) that vanish on ∂T \ Fj , with the additional constraint
that, if v ∈ Qm,Fj and v vanishes on Fj , then v vanishes on T . It is evident from their
definitions that

Qm,T ∩ Qm,Fj = {0}, Qm,Fi ∩ Qm,Fj = {0} for i �= j, (2.4)

dim Qm,T = dimPm−d−1(T ) =
(
m − 1

d

)
, (2.5)

dim Qm,Fj = dim
(
Pm−d(T ) � Pm−d−1(T )

) =
(
m

d

)
−

(
m − 1

d

)
=

(
m − 1

d − 1

)
.

(2.6)

Here and elsewhere, we use the conventions that
(n
k

) = 0 when k > n, and Pn = {0} when
n < 0. It will be useful to characterize the volume and face bubbles in terms of moments, as
we do in the following lemma.

Lemma 2.2 A function v ∈ Qm,T is uniquely determined by the moments
∫

T
vκ, ∀κ ∈ Pm−d−1(T ), (2.7)

and a function v ∈ Qm,Fj is uniquely determined by the moments
∫

Fj

vκ, ∀κ ∈ Pm−d(Fj ). (2.8)

Proof As is shown, for example, in [4], a function v ∈ Pm(T ) is uniquely determined by the
moments

∫

S
vκ, ∀κ ∈ Pm−
−1(S) , ∀S ∈ S
(T ) , 0 ≤ 
 ≤ d, (2.9)

where
∫
S vκ with S ∈ S0(T ) is understood to be the evaluation of v at the vertex S. Since

v ∈ Qm,T vanishes on S for S ∈ S j (T ) and j < d , v is determined by the moments on T
alone. Similarly, any v ∈ {v = bFj w ∈ Pm(T ) : w ∈ Pm−d(T )} is uniquely determined by
its moments on T and Fj , so any v ∈ Qm,Fj is uniquely determined by its moments on Fj

alone. ��
Definition 2.3 (Local error space) Given m ∈ N, we define the local space

Rm(T ) = Qm,T ⊕
⎛

⎝
d⊕

j=0

Qm−1,Fj

⎞

⎠ . (2.10)

Given p ∈ N, we define the local error space

Wp+d(T ) = (Qp+d,T � Qp,T ) ⊕
⎛

⎝
d⊕

j=0

(Qp+d−1,Fj � Qp,Fj )

⎞

⎠ = Rp+d(T ) � Rp(T ),

(2.11)

so that Pp(T ) + Rp+d(T ) = Pp(T ) ⊕ Wp+d(T ).
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The dimension of Wp+d(T ) is readily deduced from (2.4)–(2.6),

dimWp+d(T ) =
(
p + d − 1

d

)
−

(
p − 1

d

)
+ (d + 1)

((
p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
.

(2.12)

We further note that, by Lemma 2.2 and its proof, a function v ∈ Rp+d(T ) is uniquely
determined by the values

∫

S
vκ ∀κ ∈ Pp−1(S), ∀S ∈ S
(T ), d − 1 ≤ 
 ≤ d. (2.13)

Remark 2.4 Starting with the standard basis for P1(T ), {λ j : 0 ≤ j ≤ d}, a p-hierarchical
basis for Pm(T ), m > 1, is built from a p-hierarchical basis for Pm−1(T ) by adding basis
functions of degree m. Three approaches to such constructions, at least in d = 2, 3, are
described in [11,15,34], with a useful summary of the constructions from [15,34] provided
in [1]. In these constructions, hierarchical basis functions are associated with each sub-
simplex S ∈ S
, 0 ≤ 
 ≤ d , so it is simple in this setting to construct a basis for Wp+d(T ).

The corresponding global finite element spaces, defined by the degrees of freedom and
local spaces, are given by

Rp+d : = {v ∈ H1
0,D(�) : v|T ∈ Rp+d(T ) for each T ∈ T },

Wp+d : = {w ∈ H1
0,D(�) : v|T ∈ Wp+d(T ) for each T ∈ T },

and we recall that the Lagrange finite element space Vp is defined by (1.3). Similar to the
local setting, the global spaces satisfy the relation Rp+d = Rp ⊕Wp+d so that Vp + Rp+d =
Vp ⊕ Wp+d .

2.2 A Quasi-Interpolant Based on Moment Conditions

Lemma 2.5 Given v ∈ H1(�), there exits a v̂ ∈ Vp and ŵ ∈ Wp+d such that

(i)
∫
T (v − v̂ − ŵ)κ = 0 for all κ ∈ Pp−1(T ) and T ∈ T .

(ii)
∫
F (v − v̂ − ŵ)κ = 0 for all κ ∈ Pp−1(F) and F ∈ FI ∪ FN .

(iii) |v − v̂ − ŵ|m,T ≤ Ch1−m
T |v|1,�T for m = 0, 1, where �T is a local patch of elements

containing T .
(iv) |v − v̂ − ŵ|0,F ≤ Ch1/2F |v|1,�F , where hF is the diameter of F ∈ F , and �F = �T

for some T ∈ T with F ⊂ ∂T .
(v) |ŵ|1,T ≤ C |v|1,�T for each T ∈ T .

The constant C can be taken to be a global constant that depends only on d, p and the
shape-regularity of the T .

Proof Since functions in Rp+d(T ) are uniquely determined by the values (2.13), form = 0, 1
the function 〈〈·〉〉m,T : Rp+d(T ) → R

+ defined by

〈〈φ〉〉m,T = max
S∈S
(T )

d−1≤
≤d

sup
κ∈Pp−1(S)

hd/2−
/2−m
T

‖κ‖0,S
∫

S
φκ (2.14)

is a norm on Rp+d(T ).
Let T̃ = {y = h−1

T x : x ∈ T }, and for each ψ : T → R, define ψ̃ : T̃ → R by
ψ(y) = ψ(hT x). Analogous definitions are given for the sub-simplices of T and T̃ and
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functions defined on them. It is clear that |φ|m,T = hd/2−m
T |φ̃|m,T̃ , where | · |0,T = ‖ · ‖0,T .

We also have for any S ∈ S
(T )

hd/2−
/2−m
T

‖κ‖0,S
∫

S
φκ = hd/2−
/2−m

T

h
/2
T ‖κ̃‖0,S̃

∫

S̃
φ̃κ̃h


T = hd/2−m
T

‖κ̃‖0,S̃

∫

S̃
φ̃κ̃.

Since hT̃ = 1, we see that 〈〈φ〉〉m,T = hd/2−m
T 〈〈φ̃〉〉m,T̃ . Therefore there exists a scale-

invariant constant C > 0 that depends solely on p, d and m such that

|φ|m,T = hd/2−m
T |φ̃|m,T̃ ≤ Chd/2−m

T 〈〈φ̃〉〉m,T̃ = C〈〈φ〉〉m,T . (2.15)

At this stage, we see that the local constant C = C(T ) in (2.15) may depend on the shape of
T , but not its diameter. For the rest of the argument, we make a shape-regularity assumption
on T .

Next, denote by v̂1 ∈ Vp the Scott-Zhang interpolant of v satisfying [32]

‖v − v̂1‖m,T ≤ Ch1−m
T |v|1,�T (m = 0, 1), (2.16a)

‖v − v̂1‖0,∂T ≤ Ch1/2T |v|1,�T , (2.16b)

on each T ∈ T . Set v̂2 ∈ Rp+d such that
∫

S
v̂2κ =

∫

S
(v − v̂1)κ ∀κ ∈ Pp−1(S), ∀S ∈ S
, d − 1 ≤ 
 ≤ d.

By (2.15) and (2.16) we find

|v̂2|m,T ≤ C max
S∈S
(T )

d−1≤
≤d

sup
κ∈Pp−1(S)

hd/2−
/2−m
T

‖κ‖0,S
∫

S
v̂2κ

= C max
S∈S
(T )

d−1≤
≤d

sup
κ∈Pp−1(S)

hd/2−
/2−m
T

‖κ‖0,S
∫

S
(v − v̂1)κ

≤ C
(
h1/2−m
T ‖v − v̂1‖0,∂T + h−m

T ‖v − v̂1‖0,T
) ≤ Ch1−m

T |v|1,�T .

Uniquely decomposing v̂2 as v̂2 = v̂3 + ŵ with v̂3 ∈ Rp and ŵ ∈ Wp+d , and setting
v̂ := v̂1 + v̂3 so that v̂ + ŵ = v̂1 + v̂2, we see that properties (i)–(ii) clearly hold, and

‖v − v̂ − ŵ‖m,T ≤ ‖v − v̂1‖m,T + ‖v̂2‖m,T ≤ Ch1−m
T |v|1,�T .

Therefore by standard trace inequalities and the shape regularity of the mesh, we also have
on F ⊂ ∂T

‖v − v̂ − ŵ‖0,F ≤ C
(
h−1/2
F ‖v − v̂ − ŵ‖0,T + h1/2F |v − v̂ − ŵ|1,T

) ≤ Ch1/2F |v|1,�F .

Hence, properties (iii)–(iv) are satisfied.
Finally, since Rp(T )∩Wp+d (T ) = {0}, the Strong Cauchy–Schwarz inequality [2] gives

the existence of a constant γ ∈ [0, 1) such that ∫T ∇ŵ ·∇v̂3 ≤ γ |ŵ|1,T |v̂3|1,T . Consequently,
we have

|v̂2|21,T = |ŵ|21,T + |v̂3|21,T + 2
∫

T
∇ŵ · ∇v̂3

≥ |ŵ|21,T + |v̂3|21,T − 2γ |ŵ|1,T |v̂3|1,T ≥ (1 − γ 2)|ŵ|21,T .

Therefore we find |ŵ|H1(T ) ≤ √
(1 − γ 2)−1|v̂2|H1(T ) ≤ C |v|H1(�T ). ��
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Remark 2.6 The moment conditions (i)-(ii) of Lemma 2.5 imply the conditions
∫

T
∇(v − v̂ − ŵ) · φ = 0 for all φ ∈ RTp−1(T ) and all T ∈ T , (2.17)

where RTp−1(T ) = xPp−1(T ) + [Pp−1(T )]d = {φ = ∑d
j=0(x − z j )κ j : κ j ∈ Pp−1(T )}

is the local Raviart-Thomas space. Recalling the vertex, face and normal vector notation
above, this equivalence is most readily seen through the following simple consequence of
integration-by-parts on a simplex:

For f ∈ H1(T ),

∫

T
(x − z j ) · ∇ f = a j

∫

Fj

f − d
∫

T
f, (2.18)

where a j is the distance (altitude) between z j and Fj . Choosing f = (v − v̂ − ŵ)κ j for
κ j ∈ Pp−1(T ), and combining results for each j , makes the comparison between (2.17)
and (i)-(ii) apparent. The conditions (2.17) are not independent, so they do not impose
dim(RTp−1(T )) = d

(p+d−1
d

)+(p+d−2
d−1

)
independent constraints on Rp+d(T ), whose dimen-

sion,
(p+d−1

d

) + (d + 1)
(p+d−2

d−1

)
, is generally smaller.

2.3 Proof of Theorem 1.4

Proof of Theorem 1.4 Combining Proposition 1.2 and Lemma 2.5, we determine that

|B(u − û, v)| ≤ |B(ε, ŵ)| +
∑

T∈T
‖v − v̂ − ŵ‖0,T inf

κ∈Pp−1(T )
‖RT − κ‖0,T

+
∑

F∈FI∪FN

‖v − v̂ − ŵ‖0,F inf
κ∈Pp−1(F)

‖rF − κ‖0,F

≤ C‖ε‖1‖ŵ‖1 + C
∑

T∈T
hT ‖v‖1,�T inf

κ∈Pp−1(T )
‖RT − κ‖0,T

+ C
∑

F∈FI∪FN

h1/2F ‖v‖1,�T inf
κ∈Pp−1(F)

‖rF − κ‖0,F

≤ C (‖ε‖1‖v‖1 + osc(R, r, T )‖v‖1) .

For the final inequality, we have used Lemma 2.5 (v), the (discrete) Cauchy–Schwarz inequal-
ity and the bounded overlap of the patches �T and �F (which is also a consequence of
shape-regularity). Finally, we choose v = u − û and use the coercivity of B to complete the
proof.

Remark 2.7 We note that the continuity constant enters in the bound |B(ε, ŵ)| ≤
C‖ε‖1,�‖ŵ‖1, and only affects the term ‖ε‖1 in the reliability bound of Theorem 1.4. The
coercivity constant c affects both terms in the reliability bound.

Remark 2.8 Although our approach is analyzed as an h-method with global fixed p, the
general approach is very naturally adjusted to both p and hp-methods. As indicated in the
introduction, the driving motivation for the choice of Wp+d(T ) is to make sure that the
local oscillation is of higher order than the local best approximation error. The development
suggests that, if the local approximation space is V (T ) = PpT (T ), then the local error space
W (T ) should be spanned by face bubbles of degree pT + d − 1 and interior bubbles of
degree pT + d that are not already represented in PpT (T ). Again, although our approach is
analyzed for simplicial elements, the shapes of the elements are irrelevant for much of our
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development. In particular, it is straight-forward to apply the prescription above for choosing
W (T ) on tensor-product elements such as quadrilaterals or bricks. In Sect. 4 we investigate
our approach as a p-method on meshes that include tensorial elements.

2.4 Scalar Diffusion Problems with Jump-Discontinuities

An important subclass of problems of type (1.1) are those for which b = 0 and A = aI where
a is piecewise-constantwith respect to a polyhedral partition of�, so B(v,w) = ∫

�
a∇v·∇w.

We define the corresponding energy norm ||| · ||| by |||v|||2 = B(v, v). For a d-dimensional
subset S (think of a single simplex or a union of adjacent simplices), we define ||| · |||S by
|||v|||2S = ∫

S a∇v · ∇v. Let aT denote the value of a on T , and aF denote the maximum aT
among the (one or two) T having F as a face.

It was shown in [10,30] that, if a satisfies a quasi-monotonicity property, there is a quasi-
interpolation operator � : H1

0,D(�) → V1, such that

a1/2T |v − �v|m,T ≤ Ch1−m
T |||v|||�T , a1/2F |v − �v|0,F ≤ Ch1/2F |||v|||�T (2.19)

where C depends only on the shape-regularity of the mesh, and m = 0, 1. In particular, C is
independent of the jumps in a. Although [10,30] focus on the case c = 0, it is obvious from
their arguments that more general c ≥ 0 If we follow through essentially the same arguments
in the proof of Lemma 2.5, taking v̂1 = �v, we deduce the following variants of (iii)–(iv),

a1/2T |v − v̂ − ŵ|m,T ≤ Ch1−m
T |||v|||�T , a1/2F |v − v̂ − ŵ|0,F ≤ Ch1/2F |||v|||�F ,

|||ŵ|||T ≤ C |||v|||�T . (2.20)

Revisiting the proof of Theorem 1.4 in this setting, we obtain

|||ε||| ≤ |||u − û||| ≤ C (|||ε||| + osca(R, r, T )) , (2.21)

where C is independent of the data of the problem. As before, C may depend on p and d .
The residual oscillation term in this case is given by

osca(R, r, T )2 =
∑

T∈T
a−1
T h2T inf

κ∈Pp−1(T )
‖RT − κ‖20,T

+
∑

F∈FI∪FN

a−1
F hF inf

κ∈Pp−1(F)
‖rF − κ‖20,F . (2.22)

We point the reader to [30] for a thorough discussion of the quasi-monotonicity property,
andwhich cases it includes, but note that this property is violated by the Kellogg problem (see
Sect. 4.2.3). Despite the fact that the argument provided here does not cover that case, we see
empirically that |||ε||| is a robust estimator of |||u − û||| for such problems as well. We finally
remark that, while [10,30] focus on the case of pure diffusion problems, c = 0, their results
extend to more general reaction-diffusion problems, c ≥ 0, with no difficulty. As such, the
error bounds (2.21) hold as stated in this case as well, with the obvious adjustment to the
definition of the energy norm.We also point to [10] for analysis that allows piecewise-smooth
diffusion coefficients, having jumps as before, and again (2.21) holds.

3 Computational Considerations

Aspresented above, the computation of ε requires the solution of a global system involving the
stiffnessmatrix associatedwithWp+d . At first glance thiswould seem to rule out the approach
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as too expensive for practical computations, but we argue herein that this is not the case. Our
argument is based on considerations of sparsity structure and size of the linear systems,
and on their spectral properties. Using standard (p-hierarchical) bases for the spaces Vp and
Wp+d , we compare and contrast the corresponding global and element stiffness matrices. We
assume that global stiffness matrices are assembled by summing contributions from element
stiffness matrices computed on each simplex T ∈ T .

3.1 Size and Sparsity Structure

We begin by comparing the sizes of the element stiffness matrices for Vp(T ) and Wp+d(T ),
as well as the amount of informationwhichmust be transferred to the global stiffnessmatrices
in each case if static condensation is used locally to eliminate interior degrees of freedom.
Letting n = n(p, d) and m = m(p, d) be the number of degrees of freedom associated with
Vp(T ) andWp+d(T ), respectively, and n̂ = n̂(p, d) and m̂ = m̂(p, d) denote the analogous
quantities after interior degrees of freedom have been eliminated, we have

n =
(
p + d

d

)
, m =

(
p + d − 1

d

)
−

(
p − 1

d

)
+ (d + 1)

((
p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
,

(3.1)

n̂ =
(
p + d

d

)
−

(
p − 1

d

)
, m̂ = (d + 1)

((
p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
. (3.2)

We note that n is a polynomial of degree d in p and m is a polynomial of degree d − 1 in p,
so it is clear that n > m when p is large enough, for any fixed d . The polynomial degrees for
n̂ and m̂ are of degrees d − 1 and d − 2 in p, respectively. In Table 1 we list values of the the
four quantities (3.1)–(3.2) for 1 ≤ p ≤ 7 and d = 2, 3.

Recall that S j denotes the set of subsimplices of dimension j in T , and |S j | denotes its
cardinality, 0 ≤ j ≤ d . Without static condensation to eliminate the degrees of freedom
associated with the interiors of each T ∈ T , the sizes of the global stiffness matrices for Vp

and Wp+d are, respectively,

N =
d∑

j=0

|S j |
(
p − 1

j

)
, M = |Sd |

((
p + d − 1

d

)
−

(
p − 1

d

))

+ |Sd−1|
((

p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
.

Table 1 Size of the local
stiffness matrices for Vp(T ) and
Wp+d (T ) with and without static
condensation, for d = 2, 3

d = 2 d = 3

p n m n̂ m̂ n m n̂ m̂

1 3 4 3 3 4 5 4 4

2 6 6 6 3 10 16 10 12

3 10 8 9 3 20 30 20 20

4 15 10 12 3 35 47 34 28

5 21 12 15 3 56 67 52 36

6 28 14 18 3 84 90 74 44

7 36 16 21 3 120 116 100 52
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When the interior degrees of freedom are eliminated, the sizes become

N̂ =
d−1∑

j=0

|S j |
(
p − 1

j

)
, M̂ = |Sd−1|

((
p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
.

The formulas count degrees of freedom on �D , though these are not truly unknowns in the
problem, because many practical implementations proceed in this way when assembling
global matrices, and encode Dirichlet boundary conditions in the system as a final step.
Recognizing that

(p−1
d

)
and

(p−1
d−1

)
are polynomials of degree d and d − 1 in p, respectively,

we see again that, for any fixed d , N > M and N̂ > M̂ for sufficiently large p. To illustrate
this, consider a standard uniform triangulation of the unit square by isosceles right triangles
(half-squares) with side-length 1/s. For such triangulations, N = (p(s − 1) + 1)2 and
M = 4p(s − 1)2 + (s2 − 1), so N > M for all s ≥ 2 when p ≥ 5. For such triangulations
we also have N̂ = (3p − 2)s2 − 4(p − 1)s + p − 1 and M̂ = 3s2 − 4s + 1, so N̂ > M̂ for
all s ≥ 2 when p ≥ 2.

We now turn to the discussion of sparsity for the global matrices for Vp andWp+d . Given
S ∈ S j , let TS be the set of simplices T ∈ T which have S as a sub-simplex. We also define
Si (TS) = ∪T∈TSSi (T ) and denote its cardinality by |Si (TS)|. If S = T ∈ Sd = T , then
TS = {T } and |Si (TS)| = (d+1

i+1

)
. If S = F ∈ Sd−1, then TS consists of the one or two

simplices which have F as a face; in the first case |Si (TS)| = (d+1
i+1

)
as before, and in the

second |Si (TS)| = 2
(d+1
i+1

) − ( d
i+1

)
. For j < d − 1, the cardinalities of TS and Si (TS) for a

given S ∈ S j cannot be determined a priori for general unstructured meshes. To compute
the sparsity structure of the global stiffness matrix, the sets Si (TS) for each S ∈ S j (and each
i and j) must be determined, at least indirectly. For Wp+d this task is greatly simplified by
the fact that we need only consider Si (TS) for each S ∈ S j with i, j ∈ {d − 1, d}—these
are the two cases which are easiest to resolve! More specifically, let φ ∈ Wp+d be a basis
function, and let S be the (sub-)simplex of minimal dimension j ∈ {d − 1, d} on which φ

does not vanish identically. The number of possible non-zeros in the the row of the matrix
corresponding to φ is

|Sd−1(TS)|
((

p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
+ |Sd−1(TS)|

((
p + d − 1

d

)
−

(
p − 1

d

))
.

If static condensation is used, the number of non-zeros in a row for φ associated with an
interior face is

(2d + 1)

((
p + d − 2

d − 1

)
−

(
p − 1

d − 1

))
.

For a boundary face, 2d + 1 is replaced by d + 1. We see that, in the case of Wp+d , the
sparsity structure is known in advance. For example, when d = 2 and static condensation is
used, the number of non-zeros in any row does not exceed 5, regardless of p and the mesh
topology. When d = 3 and static condensation is used, the number of non-zeros in any row
does not exceed 7(2p − 1).

For comparison, we briefly discuss the situation for Vp. Letφ ∈ Vp be a basis function, and
let S be the (sub-)simplex of minimal dimension j on which φ does not vanish identically.
The number of possible non-zeros in the the row of B corresponding to φ, and the total
number of possible non-zeros are, respectively,
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d∑

i=0

|Si (TS)|
(
p − 1

i

)
,

d∑

j=0

∑

S∈S j

d∑

i=0

|Si (TS)|
(
p − 1

i

)
.

If static condensation is used to eliminate interior degrees of freedom, the sums are terminated
at d − 1 instead instead of d .

3.2 Spectral Behavior of the Stiffness Matrix for Wp+d

We argue in Theorem 1.5 and Remark 3.4 below that the spectral behavior of the global
stiffness matrix for Wp+d , with or without static condensation, makes it amenable to solu-
tion techniques which are simpler/faster than those for Vp . In brief, the conditioning of the
stiffness matrix forWp+d , perhaps after simple diagonal rescaling, does not deteriorate as the
triangulation is refined, unlike that for Vp . Before specifically commenting on the spectral
behavior of the global stiffness matrix for Wp+d , we first make comparison with matrices
arising from the H1-inner-product for a general finite dimensional subspace X ⊂ H1

0,D(�),
having basis {φi : 1 ≤ i ≤ N }. We define the stiffness matrices

Bi j = B(φ j , φi ), B̂i j = (
φ j , φi

)
1 =

∫

�

∇φ j · ∇φi + φ jφi .

Making the obvious identification between v ∈ R
N and v ∈ X , we see that

B(v,w) = wt Bv, (v,w)1 = wt B̂v.

Stated in terms of the matrices B and B̂, the continuity and coercivity of the bilinear form B
are

|wt Bv| ≤ C
(
vt B̂v

)1/2 (
wt B̂w

)1/2
, vt Bv ≥ cvt B̂v ∀v,w ∈ R

N .

Proposition 3.1 Let μ = μ1 + iμ2, μ1, μ2 ∈ R, be an eigenvalue of B. Then

cλmin(B̂) ≤ μ1 ≤ Cλmax(B̂), |μ2| ≤ Cλmax(B̂).

Proof Let v = v1 + iv2, v1, v2 ∈ R
N , be an eigenvector for μ; and assume, without loss of

generality, that ‖v‖ = 1, where ‖ · ‖ is the Euclidean norm on C
N . It is straightforward to

show that

vt1Bv1 + vt2Bv2 = μ1, vt1Bv2 − vt2Bv1 = μ2.

So we see that

cλmin(B̂) ≤ c
(
vt1 B̂v1 + vt2 B̂v2

)
≤ μ1 ≤ C

(
vt1 B̂v1 + vt2 B̂v2

)
≤ Cλmax(B̂).

Furthermore,

|μ2| ≤ 2|vt2Bv1| ≤ 2C
(
vt1 B̂v1

)1/2 (
vt2 B̂v2

)1/2 ≤ 2Cλmax(B̂)‖v1‖‖v2‖ ≤ Cλmax(B̂).

We have used the Cauchy Inequality, 2ab ≤ a2 + b2 for the final inequality above. ��
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To get a better handle on the spectral properties of B̂, wewe now consider element stiffness
matrices for X . Given T ∈ T , let I (T ) = { j : T ∩ supp(φ j ) �= ∅} and n = n(T ) = |I (T )|.
We define B̂T ∈ R

n×n via

(B̂T )i j = (φ j , φi )1,T =
∫

T
∇φ j · ∇φi + φ jφi for i, j ∈ I (T ).

Again making the obvious association between v ∈ R
N and v ∈ X , we define vT ∈ R

n such
that ‖v‖21,T = vtT B̂T vT ; it is clear that vT consists of the components of v whose indices

are in I (T ). We also define D̂ = diag(B̂) and D̂T = diag(B̂T ). It is apparent from these
definitions that

vt B̂v =
∑

T∈T
vtT B̂T vT , vt D̂v =

∑

T∈T
vtT D̂T vT .

The next result follows immediately from this discussion.

Proposition 3.2 Suppose there are constants c,C > 0 such that c ≤ wt B̂Tw

wt D̂Tw
≤ C for all

non-zero w ∈ R
n. Then c ≤ wt B̂w

wt D̂w
≤ C for all non-zero w ∈ R

N . As a consequence, the

spectrum of D̂−1/2 B̂ D̂−1/2 is contained in [c,C].
Suppose X = Wp+d and we use a hierarchical basis (cf. Remark 2.4). Fixing T ∈ T and

using the corresponding basis for Wp+d(T ), we may use simple scaling arguments to see
that that B̂T can be expressed in the form

B̂T = hd−2
T B1 + hdT B2,

where B1, B2 depend only on p, d and the shape-regularity of T . Thematrix B1,whose entries
are h2−d

T

∫
T ∇φ j · ∇φi , has full-rank because (·, ·)1,T is an inner-product on Wp+d(T ). The

matrix B2, whose entries are h−d
T

∫
T φ jφi is clearly a full-rank Gram matrix. This implies

that there are constants cT ,CT > 0 depending only on p, d and the shape-regularity of T
for which

cTw
t D̂Tw ≤ wt B̂Tw ≤ CTw

t D̂Tw for all w ∈ R
n . (3.3)

Invoking the shape-regularity of the family {T }, we can replace the local constants cT ,CT

with universal constants c,C and apply Proposition 3.2. We are now ready to prove Theo-
rem 1.5 our key result concerning the spectral properties of B for Wp+d :

Proof of Theorem 1.5 Letting B̂ and D̂ be as in the discussion above, and D be the diagonal
of B, we have already seen in Proposition 3.1 that B and B̂ are spectrally equivalent to each
other. It is trivial to see that D and D̂ are spectrally equivalent to each other. So, to prove
that B and D are spectrally equivalent to each other, we need merely show that B̂ and D̂
are spectrally equivalent to each other. But this was established by Proposition 3.2 and the
discussion that followed. ��
Remark 3.3 Had we chosen X = Vp , the corresponding matrix B1 has a one-dimensional
nullspace spanned by the vector v ∈ R

n that corresponds to the constant function v = 1 in
Vp(T ). We deduce that vT B̂T v = ∫

T 1 = |T | ∼ hdT , whereas v
T D̂T v ∼ hd−2

T . For any other

non-zero w ∈ R
n , wT B̂Tw and wT D̂Tw scale in precisely the same way, so there are no

scale-invariant cT ,CT for which (3.3) holds. Therefore, Proposition 3.2 cannot be applied.
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Remark 3.4 (Effect of static condensation) To analyze the effect of static condensation on
the global stiffness matrix B for Wp+d , we split the space as Wp+d = Wp+d,1 ⊕ Wp+d,2,
where Wp+d,1 is spanned by the “interior” basis functions—those supported on a single
element. This splitting of the space induces the natural 2 × 2 block structure on B

B =
(
B11 B12

B21 B22

)
,

and we must investigate the spectral properties of the Schur complement S = B22 −
B21B

−1
11 B12. Given z ∈ R

M̂ , we extend it to a vector z̃ ∈ R
M by appending it to the

vector −B−1
11 B12z ∈ R

M−M̂ . For v,w ∈ R
M̂ , we havewt Sv = w̃t Bṽ, so our analysis above

suffices to show that the spectral properties of S cannot be worse than those of B.

4 Numerical Experiments

We recall that our results concerning the reliability and computational cost of our estimator
were obtained for fixed p and (adaptive) h-refinement on simplicial meshes, with reliability
shown in the H1-norm. In the first subsection, we numerically illustrate these results on
a standard test problem in R

2 for modest p. The second subsection is devoted to extensive
testing of the robustness of the estimator with respect to polynomial degree. Here we consider
the behavior of the error estimator under uniform p-refinement on fixed (adapted) meshes of
quadrilaterals/bricks and/or simplices for several different types of problems, one of which
is in R

3. We did not use static condensation for any of the linear systems.
A key measure of the quality of the estimator is its effectivity in a norm of interest,

EFF = ‖ε‖/‖u − û‖.

In most cases, we will report effectivities in the global appropriate global energy norm,
because our theory dealswith such cases. But as amatter of interest, for the h-refinement study
we also report global L2-effectivity and local H1-effectivity—the latter of which provides a
good measure of the efficiency of local indicators ‖ε‖1,T for driving an adaptive algorithm.
The global error estimates are typically within a factor of two of the actual errors, indicating
good effectivity of the estimator. In the case of lower-order elements and h-refinement, the
experiments suggest asymptotic exactness (i.e. EFF→ 1) in some cases, which is consistent
with analysis presented in [28] for a similar estimator, and can be seen for a variety of
recovery-type estimators for lower-order elements. We are not aware of any asypomptotic
exactness results for any type of estimator in the p-version or hp-versions of finite elements,
and numerical results in [7,9] suggest that such results should not be expected at least for
recovery-type estimators. Even the p-robust family of estimators discussed in [21] never
claims effectivities very near one.

4.1 Verification of Properties of the Estimator Under Adaptive h-Refinement

We study the performance of the a posteriori error estimator with an h-refinement algo-
rithm for fixed p = 1, 2, 3 on a few model problems that exhibit typical challenges,
points-singularities and internal layers or boundary layers. Starting from a coarse mesh,
triangles are marked for refinement as follows: denoting by Tmax ∈ T the simplex with the
largest estimated error, i.e. ‖ε‖H1(Tmax)

≥ ‖ε‖H1(T ) ∀T ∈ T , we mark T for refinement if
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‖ε‖H1(T ) ≥ γ ‖ε‖H1(Tmax)
, where γ ∈ [0, 1] is some user-defined parameter. In all of the

tests in this subsection we take γ = 0.3.
The problems having boundary or internal layers are for moderate convection-dominance,

−ε�u + b · ∇u + cu = f,

where ‖b‖L∞ ≈ 1 and ε = 10−3. We apply the same adaptivity strategy described above but
replace the local H1-norm by the corresponding local energy norm for marking elements.
We remark that we have not proved that our estimator is robust with respect to ε; this will
merely be demonstrated in one of the examples below. A proper treatment of convection-
dominated problems in the context of a posteriori error estimation typically involves different
(stabilized) discretization schemes (cf. [3,36,37]); this is beyond the scope of the current
paper. The purpose of these examples is to illustrate that no change in our error estimation
approach is needed for such problems if ε is within a modest range that nonetheless allows
for challenging layer-phenomena.

4.1.1 Corner Singularity, the L-shaped Domain

We consider a prototypical problem on the L-shaped domain

−�u = f in � = (−1, 1)2\(0, 1) × (−1, 0), u = 0 on ∂�,

with f chosen so that the exact solution is given by u = r2/3 sin( 23θ)(x21 − 1)(x22 − 1). This
solution exhibits the typical singular behavior at the origin for generic f . We note that, in
this case, the oscillation term in the reliability bound reduces to purely data oscillation which
has the local form osc(R, r, T ) = hT infκ∈Pp−1(T ) ‖ f − κ‖0,T .

Starting from a uniform mesh with h = 1/8, relevant data was collected for a sequence
of 20 nested meshes obtained by the adaptive scheme described above for each p. Global
H1 and L2 effectivities are given in Fig. 1. The global effectivities in both norms are quite
good, with some indication of asymptotic exactness (or at least effectivities very near 1) in
H1 for each p, and in L2 when p ≥ 2. In terms of local H1 effectivities, we observe that the
maximum local effectivities range from [1.02, 2.17] for all tested polynomial degrees and
for all meshes, which bodes well for their efficiency as local indicators for driving adaptive
refinement. The H1 error against the (total) degrees of freedom are given in Fig. 2. In the
cases p = 1, 2 we observe the optimal convergence rate | dim Vp + dimWp+d |−p/2. In the
cubic case (p = 3), convergence seems better than the optimal rate, which indicates that we
are still in the pre-asymptotic regime at this stage.

As averificationof the claimsofSect. 3webriefly summarize the ratios dimWp+d/ dim Vp

and the condition numbers of the diagonally-rescaled stiffness matrices for Wp+d , B →
D−1/2BD−1/2. In all cases the largest value of the dimension ratio corresponds to the coars-
est mesh, and the smallest ratio to the finest mesh. For p = 1, we have dimWp+d/ dim Vp ∈
[5.09, 5.77], for p = 2 the ratios were in [2.32, 2.41], and for p = 3 the ratios were in
[1.49, 1.51]. Again, for each p and all meshes the computed condition numbers for Wp+d

remained in a relatively narrow range, neither monotonically increasing nor decreasing as
the mesh was refined. For p = 1 the range of condition numbers was [28.4, 37.3], for p = 2
this range was [15.0, 16.9], and for p = 3 this range was [30.1, 33.2].
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Fig. 1 Global H1 (solid) and L2 (dashed) effectivities for the L-shapeddomainon a sequenceof 20 adaptively-
refined meshes. Below are h-adapted meshes when p = 1 (left) and p = 3 (right)

4.1.2 Single Boundary Layer

Let � = (0, 1) × (0, 1), ∂�D consist of the left and right edges, and ∂�N consist of the top
and bottom edges. We consider the problem

−ε�u + ∂u

∂x
+ u = f in �, u = 0 on ∂�D,

∂u

∂n
= 0 on ∂�N .

Here, we take f so that the solution is

u = x − e−(1−x)/ε − e−1/ε

1 − e−1/ε ,
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Fig. 2 Test problem in Sect. 4.1.1. Energy errors versus the total degrees of freedom on a sequence of 20
adaptively-refined meshes and reference slopes
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Fig. 3 Test problem in Sect. 4.1.2. Global energy effectivities (solid) and L2 effectivities (dashed) for the
single boundary layer problem on a sequence of 25 adaptivity-refined meshes

for ε = 10−3 (modest convection dominance). This is a typical model problem that is
considered, for example, in [3].

For this problem the energy norm is defined by ‖v‖2 = ε|v|21 + ‖v‖20. We start with a
uniform mesh with h = 1/5 and calculate the energy and L2 errors, estimated errors, and
effectivities for p = 1, 2, 3 on 25 refined meshes obtained by the adaptive strategy. The
global effectivities with respect to the energy norm and the L2 norm are given in Figs. 3
and 4. The plots show, that, at least asymptotically, the effectivities are near 1 in both the
energy and L2 noms. For example, the energy effectivities for refinement levels 14 through
25 fall in the range [0.97, 1.21] for p = 1, [0.96, 1.5] for p = 2, and [0.85, 1.67] for
p = 3. Finally we plot the energy errors against the total degrees of freedom in Fig. 5.
Again, for refinement level sufficiently large, we observe, approximately, the optimal rate of
convergence | dim Vp + dimWp+d |−p/2 for p = 1, 2, 3.

4.1.3 Curved Internal Layer

Letting � = (0, 1) × (0, 1), ∂�0 consist of the left and bottom edges, and ∂�1 consist of
the top and right edges, we consider the problem

−ε�u + (−y, x) · ∇u = 0 in �, u = 0 on ∂�0, u = 1 on ∂�1. (4.1)
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Fig. 4 The effectivities for the single boundary layer problem restricted to refinement levels 14 through 25
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Fig. 5 Energy errors versus the total degrees of freedom for the single boundary layer problem on a sequence
of 25 adaptively-refined meshes and reference slopes

Formally, in the limiting case ε = 0, the weak solution is piecewise constant, having value 0
when x2+y2 < 1, and value 1when x2+y2 > 1. Note that, since theDirichlet boundary data
is not H1/2(∂�) (it is in H1/2−s(�) for all s > 0), problem (4.1) is ill-posed on H1(�). Such
convection-dominated problems having discontinuous Dirichlet data are often motivated by
(lid-)driven cavity problems, and are not uncommon infinite element literature for convection-
dominated problems (cf. [14,29,33,36]). After interpolating the boundary conditions (which
requires an arbitrary choice of u at the corners of ∂�), we obtain a discrete, continuous
function on ∂�, thus leading to a well-posed problem for each fixed mesh. However, it is
expected, and numerically confirmed, that ‖û‖1 → ∞ as the mesh is refined (Fig. 6).

As ε decreases, an internal layer forms near the curve x2 + y2 = 1. Furthermore, due
to the incompatible Dirichlet boundary conditions, there are severe singularities at the two
corners (1, 0) and (0, 1), and these singularities tend to “distract” the adaptive algorithm into
refining nearly exclusively around these two corners. We modify the adaptive strategy by
omitting the largest 1% of the local error indicators in our marking strategy. Such a strategy
of omitting some percentage of the largest local error indicators for this kind of problem has
been suggested in [38].

Since the solution to (4.1) is undefined in H1(�), we do not attempt convergence and
effectivity estimates based on a reference solution, but instead provide qualitative results that
illustrate the how the local indicators guide the refinement. We plot in Fig. 7 the resulting
meshes for polynomial degrees p = 1 and p = 3 after 20 refinements and with ε = 10−3.
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Fig. 6 h-adapted meshes for the single boundary layer problem when p = 1 (left) and p = 3 (right)

Fig. 7 h-adapted meshes for the curved internal layer problem when p = 1 (left) and p = 3 (right)

The figure clearly shows that the error estimators and adaptive strategy refine in the vicinity
of the boundary layer x2 + y2 = 1 and the two corners (1, 0) and (0, 1).

4.2 Investigation of Properties of the Estimator Under Uniform p-Refinement

In the experiments that follow, we investigate the behavior of our estimator with respect to
uniform p-refinement on fixed (adapted) meshes which may consist of quadrilaterals (or
bricks), triangles, or a combination of the two. In the case of quadrilateral or brick elements,
weuse the full tensor-product space indexedbymaximal degree in eachvariable, not a reduced
space indexed by total degree. The choice of full tensor-product space more naturally fits
with our theoretical development of the error estimator, and it provides better convergence
for some of the more challenging problems below. The auxiliary space Wp+d for the tensor
elements still consists of the interior bubbles of degree up to p+d and face bubbles of degree
up to p + d − 1 which were not already present in Vp . The problems are chosen to illustrate
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the behavior of the estimator in a variety of situations in which certain problem-dependent
parameters might reasonably affect performance.

In nearly all cases, we observe that the error estimates stay within a factor of two of
the actual errors as p increases. The conditioning varied widely between problems due to
problem parameters and the use of an integrated Legendre basis for tensor elements versus
a standard Legendre basis for triangular elements, but the ratio of condition numbers (Wp+d

over Vp) indicates that the cost of computing ε is acceptable. For example, for all choices of
β in Sect. 4.2.1, the condition number ratios for rectangular elements remainedO(1) and the
condition numbers themselves remainedO(10) for all p. For the same problem on triangular
elements this ratio decreased steadily to reach O(10−4) when p = 8, with the condition
number for Wp+d at O(100). The size of the stiffness matrix and number of non-zeros for
Wp+d tended to drop below that for Vp at either p = 4 or p = 5 for all 2D problems—static
condenstation was not used.

Because the focus of this set of experiments is to illustrate robustness of the estimator
with respect to polynomial degee p, we provide the effectivity and convergence plots with
respect to p, instead of the number of degrees of freedom. Because a priori knowledge of
the solution is used to expertly craft a mesh, exponential convergence is expected (cf. [31]
and references therein), and this is what is observed in the convergence plots. To make the
connection between p and the number of degrees of freedom clearer, recall that the mesh is
fixed, so the number of degrees of freedom is given by a polynomial of degree d in p. Since
the convergence plots have a logarithmic scale on the error axis and a linear scale on the p
axis, convergence curves that are roughly linear (or can be bounded above by a line) in these
semi-log plots indicate convergence that is exponential with respect to some fractional power
of the number of degrees of freedom, which is consistent with the theory.

4.2.1 Discontinuous and Anisotropic Diffusion on the Square

Letting � = (−1, 1) × (−1, 1), we consider problems of the form

−∇ · (A∇u) = f in �, u = 0 on ∂�, A =
(

α 0
0 1

)
, α =

{
1 x < 0

β x > 0
,

for various choices of β > 1. Because the jump discontinuity in the diffusion matrix happens
along a straight line, one does not expect singularities in u for generic f . This allows us
to isolate potential effects of varying β on the effectivity of the estimator from those which
might arise due to singularities in u—singular solutions are considered in the two subsequent
problems. The function f is chosen so that the solution is given by

u = cos(πy/2)

⎧
⎨

⎩

(
e−1 − ex + (e−1)(β+e)

e(β+1) (x + 1)
)

x < 0

β−1
(
e − ex + (e−1)(β+e)

e(β+1) (x − 1)
)

x > 0
.

We note that u = cos(πy/2)w(x), where w is the solution of the 1D problem −(αw′)′ = ex

in (−1, 1) with w(−1) = w(1) = 0, so u exhibits the typical behavior of having relatively
small magnitude where β is large.

We report convergence and effectivity for β = 10, 100, 1000 on two different meshes—
the first consisting of two rectangles obtained by dividing the domain along the line x = 0,
and the second consisting of four triangles obtained by dividing the two rectangles along their
diagonals. Convergence and effectivity plots, for the energy norm, are provided in Fig. 8 for
both types of elements. To save space, each of the four plots contain graphs for all three
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Fig. 8 Convergence of the error (solid) and error estimates (dashed) with respect to p for the discontinuous
and anisotropic diffusion problem, for both rectangular elements (left) and triangular elements (right) and
β = 10, 100, 1000. Global effectivities (solid) for both types of elements are given below their respective
convergence plots

values of β. The convergence and effectivity behavior for β = 100 and β = 1000 is nearly
identical, so their graphs are almost indistinguishable—the case β = 10 is more clearly
distinguishable from the other for both types of elements. The effectivities stay within the
range [0.7, 1) in all cases.

4.2.2 Slit Disk

Let� be the unit disk with a slit along the positive x-axis, with �1 consisting of the boundary
of the disk (r = 1) and the top of the slit (θ = 0+, 0 ≤ r ≤ 1), and �2 consisting of the
bottom of the slit (θ = 2π−, 0 < r < 1); see Fig. 9. We consider the problem

−�u = f = (4 − σ 2) sin(σθ) in �, u = 0 on �1, condition on �2,

for two choices of σ . If u = 0 on �2, we take σ = 1/2 and refer to the problem as the
Dirichlet–Dirichlet slit; and if ∂u/∂n = 0 on �2 we take σ = 1/4 call this the Dirichlet-
Neumann slit. In both cases, the solution is given by

u = (rσ − r2) sin(σθ),

and it exhibits the typical singularities present for generic f . In Fig. 9 we see the mesh and
a close-up of the central portion of the mesh. It is clear from these images that the mesh
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Fig. 9 The slit disk, together with its mesh and a close-up of the central portion
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Fig. 10 Convergence of the error (solid) and error estimates (dashed) with respect to p for both the Dirichlet–
Dirichlet case (left) and the Dirichlet–Neumann case (right). Global effectivities (solid) for both problems are
given below their respective convergence plots

includes both curved and straight quadrilaterals, but it also includes triangles touching the
origin. Despite the difference in singularity strength for the two types of boundary conditions,
the same mesh is used in both cases. At every refinement step the elements touching the
singularity are refined using an edge split ratio α = 3/20. For p-convergence tests the
hierarchic refinement process is repeated 20 times.

Convergence and effectivity plots are given in Fig. 10 for both problems, with respect to
polynomial degree p. We emphasize that the effectivities in both cases do not deteriorate
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Fig. 11 The Kellogg problem, together with its mesh for β = 5 (center) and β = 10 (right)

with p, and indicate that the error estimate is generally within a factor of two of the actual
error.

4.2.3 Kellogg Problem

Let � be the unit disk and β > 1, and define σ = arctan(β−1)/(π/4). We consider the
problem

−∇ · (α∇u) = f = (4 − σ 2) α g in �, u = 0 on ∂�,

where

g(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− cos(σ (π/4 − θ))/β, θ ∈ [0, π/2)

− sin(σ (3π/4 − θ)), θ ∈ [π/2, π)

cos(σ (5π/4 − θ))/β, θ ∈ [π, 3π/2)

sin(σ (7π/4 − θ)), θ ∈ [3π/2, 2π)

, α(θ) =
{

β2, θ ∈ [0, π/2) ∪ [π, 3π/2)

1, θ ∈ [π/2, π) ∪ [3π/2, 2π)
,

and we require that both u and α ∂u/∂n are continuous across the interfaces between the four
quadrants (see Fig. 11). We may naturally think of α and g as functions onR via 2π-periodic
extension. The solution is given by

u = (rσ − r2)g(θ),

and it exhibits the typical leading singularity present for generic f . By increasing β, we can
make σ > 0 as small as we like, thereby generating an increasingly strong singularity at the
origin. For our experiments we consider the cases β = 5 and β = 10, for which the solution
has leading singularities r0.251332 and r0.126902, respectively. As in the slit problem above, the
meshes have a mix of curved and straight triangles and quadrilaterals, as seen in Fig. 11, and
same refinement strategies are employed. To accomodate the stronger singularity in β = 10,
more aggressive ratio α = 1/20 is used. The resulting problem sizes are summarised in
Table 3. Convergence and effectivity plots are given in Fig. 12 for both β = 5 and β = 10,
with respect to polynomial degree p. As before, we see that the effectivities in both cases do
not deteriorate with p, and indicate that the error estimate is generally within a factor of two
of the actual error.
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Fig. 12 Convergence of the error (solid) and error estimates (dashed)with respect to p for theKellogg problem
with β = 5 (left) and β = 10 (right). Global effectivities (solid) in the energy norm for both problems are
given below their respective convergence plots

4.2.4 Boundary Layers

Letting � be either the unit square or the unit cube, we consider the problem

−ε�u + ∂u

∂x
+ 2u/α = 1 in �,

with homogenous Dirichlet conditions at x = 0 and x = 1, and homogeneous Neumann
conditions on the rest of the boundary. The solution is given by

u = α

2

(
1 +

(
er

− − 1

er+ − er−

)
er

+x −
(

er
+ − 1

er+ − er−

)
er

−x

)
, r± = 1 ± √

1 + 8ε/α

2ε
.

Such solutions exhibit boundary layers near both x = 0 and x = 1 when 0 < ε � 1 and
0 < α � 1. The quadrilateral meshes for ε = α = 10−1 and ε = α = 10−4 are given in
Fig. 13.

The convergence and effectivity plots for these problems are given in Fig. 14. These are
given in the energy-norm,

‖v‖2 = ε|v|21 + 2‖v‖20/α,

derived from the symmetric part of the associated bilinear form.
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Fig. 13 Rectangular meshes for the cases ε = α = 10−1 and ε = α = 10−4 of the Boundary Layer problem
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Fig. 14 Convergence of the error (solid) and error estimates (dashed) with respect to p for the Boundary
Layer problem with ε = α = 10−1 (left) and ε = α = 10−4 (right). Global effectivities (solid) for both
problems are given below their respective convergence plots

Since the errors are near machine-precision for p ≥ 7, the reported effectivities may not
be as accurate in that range. For comparison, we also provide convergence and effectivity
plots in the H1 norm for the case ε = α = 10−4 in Fig. 15.
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Fig. 15 Convergence of the error (solid) and error estimates (dashed) with respect to p for the Boundary
Layer problem with ε = α = 10−4. Global effectivities (solid) are given at right. In this case, errors and error
estimates are measured in the H1-norm
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Fig. 16 At left, convergence of the error (solid) and error estimates (dashed) with respect to p for the 3D
Boundary Layer problem with ε = α = 10−2. Global effectivities (solid) are given at right

Finally, we consider the case ε = α = 10−2 in 3D with hexahedral bricks with an
appropriate x-grading, and whose yz-aspect ratio is 1 for each brick. The convergence and
effectivity information are given in Fig. 16.

4.3 Investigation of Properties of the Estimator Under hp-Refinement

We briefly revisit two of the examples from Sect. 4.2, using an a priori hp-refinement strategy
instead of the fixed a priori h-refinement strategy with uniformly-increasing p used in that
section. In both examples, the elementwise polynomial degrees (the p-vector) are set as
the elemental graph distance from the singularity (cf. [31]) in each h-refined mesh. The
resulting problem sizes, including comparisons with their counterparts for the p method, are
summarized in Tables 2 and 3.
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Table 2 Summary of the
problem sizes for the Slit Disk
problem

Level: 1 2 3 4 5 6 7 8

p 753 1651 2897 4491 6433 8723 11,361

hp 99 223 418 700 1085 1589 2228 3018

Table 3 Summary of the problem sizes for the Kellogg problem

Level: 1 2 3 4 5 6 7 8

p 709 1585 2809 4381 6301 8569 11,185

hp 133 277 497 809 1229 1773 2457 3297

Fig. 17 hp-Convergence of the error (solid) and error estimates (dashed) with respect to the number of d.o.f
for the Dirichlet–Dirichlet case (left) and global effectivity (solid) in the energy norm (right)

Fig. 18 hp-Convergence of the error (solid) and error estimates (dashed) with respect to the number of d.o.f
for the Kellogg problem with β = 5 (left) and global effectivity (solid) in the energy norm (right)

4.3.1 Slit Disk, hp-Version

We revisit the Slit Disk problem of Sect. 4.2.2, focusing on the version having Dirichlet
boundary conditions on all edges (DD). The h-refinement in this case is identical to that used
in Sect. 4.2.2, and p increases away from the singularity as discussed above. In Fig. 17, we
see both the convergence of the error and error estimate with respect to the number of degrees
of freedom, as well as the corresponding effectivities. The convergence is exponential, as
expected, and the effectivities remain uniformly good throughout the refinement procedure.

123

Author's personal copy



126 J Sci Comput (2017) 72:97–127

4.3.2 Kellogg Problem, hp-Version

Weconsider anhp-versionof theKelloggproblem (Sect. 4.2.3),withβ = 5.Theh-refinement
in this case is the same as that described in that section. As expected, the error and error
estimates converge exponentially with respect to the number of degrees of freedom; see
Fig. 18. Again, the effectivities are essentially uniform during the procedure, though they are
slightly worse than their counterparts in the p-refinement case.
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