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ON ESTIMATORS FOR EIGENVALUE/EIGENVECTOR
APPROXIMATIONS

LUKA GRUBIŠIĆ AND JEFFREY S. OVALL

Abstract. We consider a large class of residuum based a posteriori eigen-
value/eigenvector estimates and present an abstract framework for proving
their asymptotic exactness. Equivalence of the estimator and the error is also
established. To demonstrate the strength of our abstract approach we present
a detailed study of hierarchical error estimators for Laplace eigenvalue prob-
lems in planar polygonal regions. To this end we develop new error analysis for
the Galerkin approximation which avoids the use of the strengthened Cauchy-
Schwarz inequality and the saturation assumption, and gives reasonable and
explicitly computable upper bounds on the discretization error. A brief dis-
cussion is also given concerning the design of estimators which are in the same
spirit, but are based on different a posteriori techniques—notably, those of
gradient recovery type.

1. Introduction

The purpose of this paper is to analyze a posteriori eigenvalue/eigenvector esti-
mators for a class of positive definite symmetric eigenvalue problems. We reduce the
study of the eigenvalue/eigenvector estimators to the study of associated boundary
value problems and reuse available results on the a posteriori error analysis for those
auxiliary problems. In particular, we consider those estimators for boundary value
problems which are asymptotically exact (under certain conditions, cf. [5, 6, 30])
and show that under a natural convergence and nondegeneracy assumption on the
spectral approximation problems our derived eigenvalue/eigenvector estimators are
also asymptotically exact.

Our analysis also yields equivalence of the a posteriori estimator and the rela-
tive eigenvalue/eigenvector error with reasonable and computable equivalence con-
stants. Our results are based on the techniques of the relative perturbation theory
from Numerical Linear Algebra—we are particularly influenced by the approach of
[13]—which have recently been considered in [16, 18, 19] in the setting of infinite
dimensional Hilbert spaces.

Estimators for the adaptive finite element eigenvalue approximations have re-
cently been considered in literature from several viewpoints. One possible approach
is that of Heuveline and Rannacher [22] and Verfürth [34] which is based on a gen-
eral analysis of the nonlinear (single vector) residuum equations. Such approaches
make an analysis of the approximations of multiple eigenvalues somewhat more
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involved. On the other hand, the approaches of Neymeyr [29], Durán, Padra and
Rodŕıguez [14], Larson [24] and Mao, Shen and Zhou [26] analyze the same residual
equations directly. Eigenvalue estimates for multiple eigenvalues and the associ-
ated invariant subspaces are then derived by maximizing the residual estimate over
the approximate test subspace. The approach of [14] is essentially asymptotic in
nature since the equivalence is shown up to the higher order terms. The analysis
of when these higher order terms may be neglected is given, but the equivalence
results are still not constructive in nature. The analysis of [24] is performed by a
combination of a posteriori and a priori analysis and it unfortunately requires that
the associated boundary value problem be H2 regular.

On the other hand, we start from the abstract block matrix residual equation
for the invariant subspace—as presented in [19]—which allows a natural treatment
of the eigenvalue multiplicity without incurring unnecessary regularity constraints.
This error representation formula is used both to prove the equivalence (with ex-
plicit and reasonable constants) of the residuum based estimator as well as its
asymptotic exactness. We also indicate that there is a class of sin Θ-type theorems
which use the same type of residual measures to obtain computable bounds on the
invariant subspace error; see [20]. In this paper we do not quote those results ex-
plicitly (an application of the results from [20] in our context is straightforward),
but rather concentrate on obtaining estimates of the norm of the gradient of the
eigenvector error. Of all the approaches which we have mentioned the closest in
spirit to our considerations are those from [29] and [26] since they both reduce the
study of the eigenvalue problem on the study of the associated boundary value
problem.

More to the point, we use a similar preconditioned hierarchical error estima-
tor to the one which is used in [29] and prove that our modified estimator is not
only rigorous/reliable but also efficient; in other words, equivalent to the error.
Eigenvector error estimates, which were not considered in [29] are also given. Fur-
thermore, we provide reasonable and computable equivalence constants for both
eigenvalue and eigenvector error. The authors of [26] analyze local averaging type
error estimators and prove their asymptotic exactness. To illustrate the generality
of our block-matrix (invariant subspace) residual equations we briefly discuss how
to obtain similar results for some other gradient recovery type error estimators.

In our detailed analysis of the Dirichlet Laplace eigenvalue problem we wanted
to reuse the known results on the error of the Galerkin approximation. However,
the available estimates did not suit our needs, since in the eigenvalue problem we
wanted to simultaneously consider the associated boundary value problem for a
large class of right-hand side vectors. The standard estimates involved constants
which were intricately dependent on the right-hand side vector and it was not
possible to decouple this dependence easily. Therefore, we have developed a new
error analysis—which is interesting in its own right—for the Galerkin approxima-
tion which avoids the use of the strengthened Cauchy-Schwarz inequality and the
saturation assumption. Furthermore, this analysis yields reasonable and explicitly
computable upper bounds on the discretization error.

The theory of [16, 18, 19] has been developed—in the framework of the perturba-
tion theory from [23, Chapters VI–VIII]—for an abstract positive definite symmet-
ric and closed form h in a general Hilbert space H. We use this abstract approach
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to establish the asymptotic exactness of the scaled residual and the relative eigen-
value/eigenvector error in Section 4. It is often the case that one loses information
about important specific examples by making general abstract arguments. However,
to show the strength of our theory we focus on the Dirichlet Laplacian in polygonal
domains with possibly reentrant corners, demonstrating that nothing important is
lost in the general arguments. In Section 3 we introduce our measures of the size
of the scaled residual—which we call approximation defects—and give a detailed
constructive (equivalence) analysis of their behaviour. Furthermore, to this end
in Section 5 we revisit the class of error estimators for boundary value problems
from [12, 27, 28] and obtain new reasonable and computable upper bounds on the
discretization error.

2. Notation and preliminaries

Let R ⊂ R
2 be a bounded polygonal region, possibly with reentrant corners.

By H1
0 (R) we denote the subspace of the first order Sobolev space H1(R) which

consists of all those functions which vanish on the boundary ∂R (this is meant in
the sense of the trace operator). The space H1

0 (R) is assumed to be equipped with
the norm ‖u‖H1

0
= |u|1,2. By ‖ · ‖ we always denote the norm on L2(R) and we use

| · |k,2, k ∈ N to denote the standard Sobolev semi-norms. For a subdomain S ⊂ R
we use ‖ · ‖S to denote the L2 norm on S. For other real α ∈ (0, 1] we also use
H1+α(R) to denote standard interpolation spaces.

In Section 4 we shall deal with variational eigenvalue problems for a general
closed symmetric and positive definite form h in a Hilbert space in the sense of
[23, Theorem VI-2.23, p. 331]. Indeed, this is a natural framework for most of
our theory and this is the generality in which the results of [19] have been proved.
However, in this paper it is our aim to discuss the finer properties of the construction
from [19]. To this end, and also to ease the presentation, we concentrate on the
Dirichlet Laplace eigenvalue problem. In the weak form this reads: Find the real
eigenvalue λ and a nonzero eigenfunction v ∈ H1

0 (R) such that

(2.1)

{∫
R ∇v · ∇ψ = λ

∫
R vψ, for all ψ ∈ H1

0 (R),∫
R |v|2 = 1.

Problem (2.1) is attained by a sequence of positive eigenvalues λi—ordered in the
ascending order λi ≤ λi+1, i ∈ N according to multiplicity—such that λi → ∞ and
a sequence of associated eigenvectors such that vj ∈ H1+α(R) (the parameter α
depends on the regularity of R). In the operator form this can be written as

(2.2)

{
−�vi = λivi, in R,

vi = 0 on ∂R.

The gradient operator ∇ and the Laplace operator � are meant in the distributional
sense. We will also use the notation −� to denote the positive definite self-adjoint
operator H which represents the symmetric form

(2.3) h(ψ, φ) =
∫
R
∇ψ · ∇φ, ψ, φ ∈ H1

0 (R)

in the sense of [23, Theorem VI-2.23, p. 331], i.e. h(ψ, φ) = (H1/2ψ,H1/2φ),
ψ, φ ∈ H1

0 (R) and the domain of definition of H1/2 equals H1
0 (R). The associated

quadratic form is denoted by h[ψ] = h(ψ, ψ)1/2. In this paper we use D(H) to
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denote the domain of the operator H, Σ(H) to denote its spectrum and Q(h) to
denote the domain of the symmetric form h. Furthermore, for a linear operator A
we use R(A) and N(A) to denote its range an the null space.

To compute finite element approximations for the eigenvalues and eigenvectors
of (2.1) we define a family of finite element spaces. Let Td be a collection of closed
triangles such that R =

⋃
τ∈Td

τ . The diameter of a triangle τ ∈ Td is given by dτ ,
and the maximal diameter

d = max
τ∈Td

dτ

is used to index the triangulation. We will only consider conforming triangulations
Td of R—triangulations such that the intersection of any two triangles in Td is
either empty, or consists of a common edge or vertex. For a given triangulation Td

we define the finite dimensional function spaces:

L(Td) = {u ∈ H1
0 (R) | for T ∈ Td, u|T is a linear function},(2.4)

Q(Td) = {u ∈ H1
0 (R) | for T ∈ Td, u|T is a quadratic function} .(2.5)

We will also make use of the space B(Td) of edge bubble functions, which are
those functions from Q(Td) which vanish at the vertices of all triangles in Td. We
have the hierarchical decomposition Q(Td) = L(Td) ⊕ B(Td), so we use B(Td) =
Q(Td) 
 L(Td) as a compact definition.

We take the standard bases for L(Td) and B(Td), which are described as follows.
Let Vd be the set of interior vertices, V̄d the set of all vertices, and Ed the set of
the interior edges in the triangulation Td. Then the bases for L(Td) and B(Td) are,
respectively,

{�z ∈ L(Td) | �z(z′) = δzz′ for z ∈ Vd, z′ ∈ V̄d}

and

{be ∈ B(Td) | be = 4�z�z′ for e ∈ Ed with endpoints z, z′}.

The factor of 4 in the definition of be is chosen so that the coefficients of a function
in B(Td) with respect to this basis coincide with the values of the function at the
midpoints of the corresponding edges. The union of these sets forms a (hierarchical)
basis for Q(Td). The cardinalities of the sets Td, Vd and Ed are related by Euler’s
formula, |Ed| = |Td| + |Vd| − 1, and we generally expect that Ed has between three
and four times the cardinality of Vd. We will use the spaces L(Td) to compute
eigenvalue/eigenvector approximations and the spaces B(Td) to assess the quality
of the approximation.

A discrete variant of (2.1) now reads: Find nonzero u ∈ L(Td) such that

(2.6)

{∫
R ∇u · ∇ψ = λ

∫
R uψ, for all ψ ∈ L(Td),∫

R |u|2 = 1,

and it is attained by a finite number of discrete eigenvalues λi(Td) and discrete
eigenvectors ui(Td), i = 1, . . . , dimL(Td). The discrete eigenvalues λi(Td) (discrete
eigenvectors ui(Td)) are often called the Ritz values/vectors. We reserve these terms
for those discrete eigenvalues/eigenvectors which approximate a particular eigen-
value of interest and have a joint multiplicity which is equivalent to the multiplicity
of the eigenvalue.
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Let us assume that we want to approximate the eigenvalue λq of multiplicity
m ∈ N of (2.1). This is to say we assume that

(2.7) λq−1 < λq = λq+1 = · · · = λq+m−1 < λq+m.

We also assume that q+m < dimL(Td). By Pd we denote the orthogonal projection
onto the linear span of {uq(Td), . . . , uq+m−1(Td)}. We use R(Pd) to denote the range
of the projection Pd and we write

(2.8) R(Pd) = span{uq(Td), . . . , uq+m−1(Td)}.
Given such a subspace R(Pd) we set µd

i = λq−1+i(Td) and ψd
i = uq−1+i(Td).

We call µd
i and ψd

i Ritz values/vectors from the subspace R(Pd). For m ∈ N

we also define the orthogonal projection LM(d) as the orthogonal projection onto
span{u1(Td), . . . , uM(Td)}. Let us also note that in what follows when choosing our
notation we will suppress the dependence on the parameter d wherever there is no
danger of confusion.

In the case when we have a general orthogonal projection P , R(P ) ⊂ H1
0 (R),

dim R(P ) = m we have that

µi = max
S⊂R(P ),

dimS=m−i+1

min
ψ∈S

‖∇ψ‖2

‖ψ‖2
, i = 1, . . . , m,

are the Ritz values from R(P ) and the Ritz vectors are ψi ∈ R(P ), i = 1, . . . , m
such that µi = ‖∇ψi‖2, ‖ψi‖2 = 1.

Let us now explain the estimation procedure on the example of the Dirichlet
Laplace operator. Take ψ ∈ R(P ) ⊂ H1

0 (R) and consider the solution u(ψ) of the
problem

−�u = ψ, u ∈ H1
0 (R).

Let the functions uP (ψ) ∈ R(P ), u1(ψ, Td) ∈ L(Td), for ψ ∈ R(P ), be such that

‖∇u(ψ) −∇uP (ψ)‖ = min
v∈R(P )

‖∇u(ψ) −∇v‖,

‖∇u(ψ) −∇u1(ψ, Td)‖ = min
v∈L(Td)

‖∇u(ψ) −∇v‖.

We define the approximation defects

ηi(P ) = max
S⊂R(P )

dimS=m−i+1

min
ψ∈S

‖∇u(ψ) −∇uP (ψ)‖
‖∇u(ψ)‖ ,(2.9)

ηi(P, Td) = max
S⊂R(P )

dimS=m−i+1

min
ψ∈S

‖∇u(ψ) −∇u1(ψ, Td)‖
‖∇u(ψ)‖ .(2.10)

The quantities ηi(P ) are defined for any projection P such that R(P ) ⊂ H1
0 (R).

They are the main ingredient of the error estimates below and we call them the
approximation defects of R(P ) or scaled residuals. Obviously, for Pd from (2.8) we
have ηi(Pd) = ηi(Pd, Td) and we can profit from the information on the approxima-
tion properties of the spaces L(Td) in the quest for obtaining computable estimates
of ηi(Pd). If the projection P , R(P ) ⊂ L(Td) does not satisfy the assumption (2.8)
we do not have the equality ηi(P ) = ηi(P, Td), but a simple perturbation argu-
ment can be used to obtain estimates of the approximation defect ηi(P ). We will
comment on this more in Section 3 where we develop practical procedures for the
computation of ηi(P ); cf. (3.11). The reason why we have chosen such test spaces



744 LUKA GRUBIŠIĆ AND JEFFREY S. OVALL

is that we use an adaptation of the standard results on the hierarchical decomposi-
tion Q(Td) = L(Td)⊕B(Td) to obtain practical computational estimates for ηi(P ).
This is the main subject of the following section.

The analysis of [19] yields the conclusion that the test space R(P ) contains
sufficiently good approximation for the eigenvalue λq when ηm(P ) is smaller than
half of the relative gap

γq := min
{λq+m − µm

λq+m + µm
,
µ1 − λq−1

µ1 + λq−1

}
.

This is in line with the standard eigenvalue convergence analysis in Numerical
Linear Algebra. We now state the results which follow by specializing the general
results from [19, Theorems 3.3 and 3.4] and [19, Proposition 3.7] to the Dirichlet
Laplace operator defined by (2.2)–(2.3).

Theorem 2.1 (specialization of [19, Theorem 3.3] to −�). Let λq−1 < λq =
λq+m−1 < λq+m hold for the eigenvalues and let R(P ) ⊂ H1

0 (R) be the test subspace
such that dim R(P ) = m and ηm(P )

1−ηm(P ) < γq. Then we have

||| diag(
|λq − µi|

µi
)m
i=1 ||| ≤ ηm(P )

gq,ηm(P )
||| diag(ηi(P ))m

i=1 |||,(2.11)

where gq,ζ := max
{µ1(1−ζ)−(1+ ζ

1−ζ )λq−1

(1+ ζ
1−ζ )λq−1

,
(1− ζ

1−ζ )λq+m−(1+ζ)µm

(1− ζ
1−ζ )λq+m

}
for q > 1 and we

set g1,ζ := g1 := λm+1−µm

λm+1+µm
. Here we use diag(αi)m

i=1 to denote the m × m diagonal
matrix with scalars αi on its diagonal and ||| · ||| denotes any unitary invariant
matrix norm and µi are the Ritz values from R(P ).

In the case in which we do not have explicit information on the multiplicity of
λq we have a weaker upper estimate. To simplify the exposition we introduce the
notation ΣD = {λi : i ∈ N} and assume that we want to approximate the first
m ∈ N eigenvalues of (2.2). We now establish the equivalence of the error and the
estimators ηi in this case. This follows as an obvious combination of [19, Theorems
3.3 and 3.4] and [19, Proposition 3.7].

Theorem 2.2. Let λm < λm+1 and let λs1 < λs2 < · · · < λsp
be all the elements1

of {λi : i = 1, . . . ,m}. If ηm(Lm(d))
1−ηm(Lm(d)) < λm+1−λm(Td)

λm+1+λm(Td) , then

λ1(Td)
2λm(Td)

m∑
i=1

η2
i (Lm(d)) ≤

m∑
i=1

λi(Td) − λi

λi(Td)
≤ 1

min
i=1,...,p

gsi,ηmi
(Psi

(d))

m∑
i=1

η2
i (Lm(d)).

Here Psi
(d) is the orthogonal projection onto the linear span of {uj(Td) : j =∑i

k=1 mk + 1, . . . ,
∑i+1

k=1 mk} and mi is the multiplicity of the eigenvalue λsi
, i =

1, . . . , p. Obviously the identity Ps1(d)⊕Ps2(d)⊕· · ·⊕Psp
(d) = Lm(d) holds. In the

case in which λ1 = λm we can drop the constant λ1(Td)
2λm(Td) from the lower estimate.

Remark 2.3. Note that as ηmi
(Psi

(d)) → 0 we have

gsi,ηmi
(Psi

(d)) → min{
λsi+1 − λsi

λsi

,
λsi

− λsi−1

λsi−1

}

1We assume that 1 ≤ s1 < s2 < · · · < sp ≤ m.
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and mini=1,...,p gsi,ηmi
(Psi

(d)) quantifies the minimal relative gap among the eigen-
values λs1 < λs2 < · · · < λsp

. Note that the relative gap gsi,ηmi
(Psi

(d)) distin-
guishes better between the close eigenvalues than the absolute gap, e.g. min{λsi+1−
λsi

, λsi
− λsi−1} is an example of an absolute gap. In Theorem 2.2, equivalently

as in [13, Proposition 2.3], we have that when ηmi
(Psi

(d)) < 1
3 mink �=j

|λsk
−λsj

|
λsk

+λsj
,

i = 1, . . . , p, then

1
min

i=1,...,p
gsi,ηmi

(Psi
(d))

≤ 1

min
k �=j

|λsk
− λsj

|
λsk

+ λsj

.

Remark 2.4. The constant λ1(Td)
2λm(Td) is not satisfactory, since it implies that the esti-

mate is not quantitatively useful for higher eigenvalues. Establishing sharper lower
estimate for higher eigenvalues is technically involved and does not promise any sig-
nificant new quantitative information. Any type of estimate is bound to include the
minimal relative gap between the computed Ritz values and the unwanted compo-
nent of the spectrum, and estimating this distance is in practice only asymptotically
possible. As an alternative we establish, in Section 4, an asymptotic exactness of
the eigenvalue error and the approximation defects. This result holds for all dis-
crete eigenvalues of a positive definite operator. It even holds for the eigenvalues
which are in gaps of the essential spectrum (in case we are considering unbounded
domains or periodic boundary conditions).

Let us note that Theorem 2.2 essentially solves the eigenvector approximation
problem, too. By this we mean that we have both upper as well as lower estimates
for the eigenvector error. This is made explicit in the following proposition.

Proposition 2.5. For eigenvectors −�vi = λivi, ‖vi‖ = 1 there are Ritz vectors
ψi, ψi ∈ R(P ) and ‖ψi‖ = 1—assuming λq−1 < λq ≤ · · · ≤ λq+m−1 < λq+m and
2ηm < γq—such that

‖vi − ψi‖ ≤ max
λ∈ΣD \{λi}

√
2λµi

|λ − µi|
ηm(P )√

1 − ηm(P )
,(2.12)

‖∇ψi −∇vi‖2

‖∇vi‖2
= ‖vi − ψi‖2 +

µi − λi

λi
, i = q, ..., q + m − 1.(2.13)

The proof of (2.12) can be found in [17, Theorem 6.2] and identity (2.13) is
well-known. We can now combine (2.13) with (2.12) and Theorem 2.2 to obtain
equivalent estimators for the eigenvector error:

Corollary 2.6. Let the assumptions and the notation of Theorem 2.2 hold. Then
there are eigenvectors vi and discrete eigenvectors ui(Td), i = 1, . . . ,m such that

λ1(Td)
2λm(Td)

m∑
i=1

η2
i (Lm(d)) ≤

m∑
i=1

‖∇ui(Td) −∇vi‖2

‖∇vi‖2
≤ 3

∑
m

i=1 η2
i (Lm(d))

min
i=1,...,p

gsi,ηmi
(Psi

(d))
.

This estimate can be both refined and generalized (to any positive definite op-
erator) in an obvious way with the help of [19, Theorem 3.3 and Proposition 3.7]
and [17, Theorem 6.2]. We leave out the details since their elaboration would not
yield any new information.
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3. Equivalence of the eigenvalue/eigenvector estimator

In the previous section, it was established that the approximation defects ηi(P )
are equivalent to their respective relative eigenvalue and eigenvector errors, and
in Theorem 4.1 it will be shown that they actually provide asymptotically exact
approximation of these relative errors. With this in mind, it is clear that approxi-
mation defects are useful theoretical tools in the analysis of eigenvalue/eigenvector
approximations. That stated, they do not generally provide useful practical tools
because they are not readily computed. In this section we consider computable
estimates of the approximation defects ηi(P ) of R(P ). In particular, we show that
these estimates are equivalent to the approximation defects. We assume that the
test subspace R(P ) satisfies the same conditions as in (2.8), and for ψ ∈ R(P ) we
consider the functions u1(ψ, Td) ∈ L(Td), u2(ψ, Td) ∈ Q(Td) and ε(ψ, Td) ∈ B(Td)
defined by:∫

R
∇u1(ψ, Td) · ∇v =

∫
R

ψv for all v ∈ L(Td),(3.1) ∫
R
∇u2(ψ, Td) · ∇v =

∫
R

ψv for all v ∈ Q(Td),(3.2) ∫
R
∇ε(ψ, Td) · ∇v =

∫
R

ψv −∇u1(ψ, Td) · ∇v for all v ∈ B(Td) .(3.3)

This definition for u1(ψ, Td) coincides with the minimization formulation given in
Section 2, and u2(ψ, Td) satisfies the analagous minimization problem. The function
ε(ψ, Td) is the projection of the linear residual error onto the space of edge bump
functions, and is an example of a hierarchical basis error estimator, which are
well-known in the literature (see, for example, [2, Ch. 5] and [3]). The quantity
‖∇ε(ψ, Td)‖ is much cheaper to compute than ‖∇u2(ψ, Td) − ∇u1(ψ, Td)‖, and
provides a reliable estimate of the actual error ‖∇u(ψ) −∇u1(ψ, Td)‖.

Using arguments similar to those of Dörfler and Nochetto in [12], we will prove
in Corollary 5.10 of Section 5 that there exists a constant C1(Td) depending solely
on the shape regularity of Td such that

‖∇u(ψ) −∇u1(ψ, Td)‖ ≤ C1(Td)‖∇ε(ψ, Td)‖ + osc(ψ, Td) .(3.4)

The term osc(ψ, Td) is a measure of the oscillation in the data ψ. There are various
ways of describing data oscillation to be found in the literature (see, for example,
[12, 27]), and our definition will be similar in spirit to those. In Section 5, we will
define osc(ψ, Td) explicitly and give a computable bound on C1(Td). For now, we
merely state that, for ψ ∈ H1

0(R),

osc(ψ, Td) ≤ C2(Td)d2‖∇ψ‖ ,(3.5)

where C2(Td) depends solely on the shape regularity of Td. Our estimate of ηi(P )
based on ε(ψ, Td), for some R(P ) ⊂ L(Td), is given by

(3.6) ηi(Bd, P ) = max
S⊂R(P)

dimS=m−i+1

min
ψ∈S

‖∇ε(ψ, Td)‖√
‖∇u1(ψ, Td)‖2 + ‖∇ε(ψ, Td)‖2

,

and we have the following theorem.

Theorem 3.1. Let −� be the Dirichlet Laplacian in R, which we triangulate
with Td. If we take Pd to be the orthogonal projection onto the linear span of ψd

i ,
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i = 1, . . . , m from (2.8), then

1 ≤ ηi(Pd)
ηi(Bd, Pd)

≤ C1(Td) + max
ψ∈R(Pd),‖ψ‖=1

osc(ψ, Td)
‖∇ε(ψ, Td)‖

,

where C1(Td) is the optimal constant in (3.4).

Proof. Take an arbitrary ψ ∈ R(Pd). To establish the left-hand inequality, we first
note that

‖∇u(ψ)‖2 = ‖∇(u(ψ) − u1(ψ, Td) − ε(ψ, Td))‖2 + ‖∇u1(ψ, Td)‖2 + ‖∇ε(ψ, Td)‖2

≥ ‖∇u1(ψ, Td)‖2 + ‖∇ε(ψ, Td)‖2 .

Therefore, we have

‖∇(u(ψ) − u1(ψ, Td))‖2

‖∇u(ψ)‖2
= 1 − ‖∇u1(ψ, Td)‖2

‖∇u(ψ)‖2

≥ 1 − ‖∇u1(ψ, Td)‖2

‖∇u1(ψ, Td)‖2 + ‖∇ε(ψ, Td)‖2

=
‖∇ε(ψ, Td)‖2

‖∇u1(ψ, Td)‖2 + ‖∇ε(ψ, Td)‖2
.

To prove the right-hand estimate, we note that
‖∇u(ψ) −∇u1(ψ, Td)‖

‖∇u(ψ)‖ ≤ C1(Td)
‖∇ε(ψ, Td)‖
‖∇u(ψ)‖ +

osc(ψ, Td)
‖∇u(ψ)‖ .

Replacing ‖∇u(ψ)‖ by
√
‖∇u1(ψ, Td)‖2 + ‖∇ε(ψ, Td)‖2 in the denominator only

increases the right-hand side. The conclusions of the theorem now follow readily
from the definitions. �

Under the standard nondegeneracy assumption,

(3.7) ‖∇u(ψ) −∇u1(ψ, Td)‖ ∼ d‖ψ‖ for sufficiently small d ,

Theorem 3.1 establishes the equivalence of ηi(Pd) and the computable ηi(Bd, Pd).
Here and elsewhere the notation X ∼ Y is used to indicate that, asymptotically,
c1X ≤ Y ≤ c2X for some constants c1, c2 > 0. In particular, the nondegeneracy
assumption together with (3.4) and (3.5), imply that

osc(ψ, Td) ≤ C2(Td)
√

µmax(R(Pd)) d2‖ψ‖(3.8)

and

‖∇ε(ψ, Td)‖ ∼ ‖∇u(ψ) −∇u1(ψ, Td)‖ ∼ d‖ψ‖ ,(3.9)

where µmax(R(Pd)) is the largest of the Ritz values associated with the orthonormal
Ritz basis of R(Pd). Stated more explicitly and concisely, Theorem 3.1 together with
(3.8), (3.9) and the fact that there is a constant C ≥ C(Td), yields

(3.10) 1 ≤ lim
d→0

ηi(Pd)
ηi(Bd, Pd)

≤ C .

Furthermore, the arguments in Section 5 provide a means of estimating the size of
this constant directly from the shape regularity constraints on the geometry of the
meshes.

The actual computation of the ηi(Bd, Pd) involves solving a small, m × m, gen-
eralized eigenvalue problem. Given a target range in which to look for eigenvalues
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of −∆ and a target number m of Ritz values/vectors of the discretized operator
to compute, the initial stage of computation returns Ritz values {µd

1, . . . , µ
d
m} and

corresponding Ritz vectors {ψd
1 , . . . , ψd

m}; recall (2.8) from Section 2. It is these
Ritz vectors that form the orthonormal basis for the space R(Pd) onto which Pd

projects. If we take εd
i = ε(ψd

i , Td), it is clear that computing (3.6) for every i is
equivalent to solving the generalized eigenvalue problem

(3.11) Ev = η2 (E + D)v, D = diag(µd
1, . . . , µ

d
m), Eij =

∫
R
∇εd

i · ∇εd
j .

Here we have relied on the fact that both u1(ψ, Td) and ε(ψ, Td) depend on ψ
linearly.

We make a few final remarks before returning to consider the perturbation con-
struction from Section 2 and what it tells us about the asymptotic behavior of the
approximation defects. At the beginning of this section, we alluded to the fact that
in Theorem 4.1 it is shown that

lim
d→0

∑m
i=1

|µd
i −λq|
µd

i∑m
i=1 η2

i (Pd)
= 1 .(3.12)

In Section 6, we see experimentally that an analogous result to (3.12) appears to
hold with ηi(Pd) replaced by ηi(Bd, Pd). This suggests that an even stronger result
than asymptotic equivalence (3.10) may generally hold—namely

(3.13) lim
d→0

ηi(Pd)
ηi(Bd, Pd)

= 1 .

Recent work by the second author [30] provides a partial explanation of why (3.13)
could actually be expected in some situations. There it is shown that ‖∇ε(ψ, Td)‖
is an asymptotically exact approximation of ‖∇(u(ψ) − u1(ψ, Td))‖, provided that
u(ψ) ∈ H3(Ω) ∩ W 2

∞(Ω) and certain approximate mesh symmetries are present
throughout much of the mesh. Therefore, if these conditions hold for ψ ∈ R(Pd),
we should expect behavior like (3.13). These smoothness assumptions are satisfied
in our setting for convex domains, but not necessarily for nonconvex domains.
To argue (3.13) properly would require a careful retracing and application of the
arguments in [30]. This is beyond the scope of the current paper, but we may revisit
this idea in the future.

This same sort of reasoning suggests that error estimates based on gradient
recovery might also work very well in this context; many such estimators have also
been proven to yield asymptotically exact approximations of error under certain
assumptions, and are seen to do so in practice even when these assumptions do
not hold (or cannot be verified). For concreteness, we briefly mention the recovery
scheme of Bank and Xu [5, 6] and how it can be used in our context. Given the
piecewise constant ∇u1(ψ, Td), each component of the gradient is L2-projected into
the space of continuous, piecewise-affine functions on Td which do not vanish on
the boundary, and then a few iterations of a multigrid-like smoother is applied to
each component of the result. In symbols,we denote this, or any, gradient recovery
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procedure by

∇u1(ψ, Td) �→ Gd(u1(ψ, Td)) .

The corresponding analogue of our ηi(Bd, Pd) is

ηi(Gd, Pd) = max
S⊂R(Pd)

dimS=m−i+1

min
ψ∈S

‖Gd(u1(ψ, Td)) −∇u1(ψ, Td)‖
‖Gd(u1(ψ, Td))‖

.

Although we have only explicitly mentioned the Bank/Xu recovery scheme, others
might also be used; but one should take care that the recovery scheme is linear
with respect to u1(ψ, Td) so that the ηi(Gd, Pd) can be computed by solving a
small generalized eigenvalue problem analogous to the one described above for the
ηi(Bd, Pd). In fact, many a posteriori error estimators could feasibly be used in
this context; the main theoretical differences being with what we might be able to
prove similar to Theorem 3.1.

Finally, we remark briefly that, whatever procedure is used to compute ψd
i , we

will in fact get a perturbation ψ̃d
i of it. However, the well-conditioning of the

system associated with the computation of εi(ψ)—which we establish explicitly in
Section 5—guarantees that this approximation error is not unduly magnified. In
other words, the approximation of E which we actually compute is of good quality
and (3.11) is a well-behaved positive definite m×m generalized eigenvalue problem.

4. On the asymptotic behavior of the estimators ηi(Pd)

Our analysis of the asymptotic properties of ηi(Pd) is based on the abstract
eigenvalue error representation result from [19, equation (3.9)]. Subsequently, most
of the results from this section hold for any positive definite self-adjoint operator
in a general Hilbert space, since this is the generality in which [19, equation (3.9)]
has been proved. We will make this claim precise in the discussion at the end of
this section. For now we concentrate on our model problem of the Dirichlet Laplace
operator. This will reduce the notational burden on the reader, without sacrificing
the generality of our technique.

For the form h in (2.3) and some orthogonal projection Y , such that R(Y ) =
Y ⊂ H1

0 (R) and dimY < ∞, we define the positive definite form hY , generically
using Y ⊥ := I− Y , by the formula

(4.1) hY (ψ, φ) = h(Y ψ, Y φ) + h(Y ⊥ψ, Y ⊥φ), ψ, φ ∈ H1
0 (R).

By HY we denote the self-adjoint operator which is defined by hY in the sense
of Kato (see [23, Theorem VI-2.23, p. 331]). We call hY the block diagonal part
of h with respect to the decomposition Y ⊕ Y ⊥ = I. Here we use I to denote
the identity operator on L2(R). We also call HY the block diagonal part of the
Dirichlet Laplace operator.

Let Yd be the orthogonal projection onto L(Td) and let Pd be as before. In
this section we shall need the operators HPd

and HYd
, which are defined by the

procedure (4.1). Some further properties of this construction can be found in [17,
18, 19] and the references therein. We collect those properties we shall need in the
following list:
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h(ψ, φ) − hPd
(ψ, φ) = h(P⊥

d ψ, Pdφ) + h(Pdψ, P⊥
d φ), ψ, φ ∈ H1

0 (R),

h(ψ, φ) − hYd
(ψ, φ) = h(Y ⊥

d ψ, Ydφ) + h(Ydψ, Y ⊥
d φ), ψ, φ ∈ H1

0 (R),

hYd
(ψ, φ) = hPd

(ψ, φ), φ ∈ R(Pd), ψ ∈ H1
0 (R),

h(Y ⊥
d ψ, Ydφ) = h(P⊥

d ψ, Pdφ), φ ∈ R(Pd), ψ ∈ H1
0 (R),

HPd
ψ = HYd

ψ, ψ ∈ R(Yd) or ψ ∈ R(Y ⊥
d ) ∩ D(HYd

),

ηm(Pd) = max
ψ,φ∈H1

0 (R)
ψ,φ �=0

|h(ψ, φ) − hPd
(ψ, φ)|√

hPd
(ψ, ψ)hPd

(φ, φ)
.

We also need the following definitions. By Ξd : R(Pd) → R(Pd) and Wd : R(Pd)⊥ →
R(Pd)⊥ we denote the operators which are defined by the form hPd

—in the sense
of Kato—in the spaces R(Pd) and R(Pd)⊥, respectively. The operator Ξd is called
the (generalized) Rayleigh quotient. Note that Ξdψ

d
i = µd

i ψ
d
i , ‖ψd

i ‖ = 1 holds for
the Ritz values µd

i and Ritz vectors ψd
i from (2.8).

To study the asymptotic behavior of ηi(Pd) we make the following standard
convergence assumption (cf. [21, Assumption (2.14)]),

‖∇u(ψ) −∇u1(ψ, Td)‖ ≤ C dα1 ‖∇ψ‖, ψ ∈ H1
0 (R)(4.2)

and C, α1, 0 < α1 are independent of d and ψ. We also make an abstract non-
degeneracy assumption (similar in spirit to (3.7)),

(4.3) ‖∇u(ψ) −∇uPd
(ψ)‖ ≥ c dα1‖∇ψ‖, ψ ∈ R(Pd).

The constant c is naturally also assumed to be independent from d and ψ. If there
exists a disc D ⊂ R and a constant k > 0 such that

min{diam(T ) : T ∈ Td and T ⊂ D} ≥ kd,

then according to [14, Remark 4.1] the assumption (4.3) holds.
Without reducing the level of generality we may assume that we are given an

eigenvalue λq of multiplicity m and Ritz vectors ψd
i which are paired with eigen-

vectors vi, ‖vi‖ = 1, i = 1, ..., m in the sense of Proposition 2.5; cf. [17, Theorem
6.2]. The general case of a cluster of eigenvalues λq ≤ λq+1 ≤ · · · ≤ λq+m−1 can be
reduced to the case of a single multiple eigenvalue and the conclusions, identities
(4.4) and (4.5) below, remain unchanged.

Theorem 4.1. Let the assumptions (4.2)–(4.3) hold and let Pd from (2.8) be such
that ηm(Pd)

1−ηm(Pd) < γd
q := min

{
λq+m−µd

m

λq+m+µd
m

,
µd

1−λq−1

µd
1+λq−1

}
for all d. Then, assuming the

pairing of eigenvectors and Ritz vectors as before, we have

lim
d→0

∑m
i=1

|µd
i −λq|
µd

i

η2
1(Pd) + · · · + η2

m(Pd)
= 1,(4.4)

lim
d→0

∑m
i=1

‖∇ψd
i −∇vi‖2

‖∇vi‖2

η2
1(Pd) + · · · + η2

m(Pd)
= 1.(4.5)

Analogous asymptotic properties are shared by other measures of the relative error
from (2.11).
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Proof. The bounded symmetric form h(H−1/2
Pd

·,H−1/2
Pd

·) − λq(H
−1/2
Pd

·,H−1/2
Pd

·) can
be represented—with respect to Pd ⊕ P⊥

d = I—by the bounded operator matrix

(4.6) Hs(λq) =
[
I − λqΞ−1

d Γ∗
d

Γd I− λqW−1
d

]
, and Γd : R(Pd) → R(P⊥

d )

is such that (ψ, Γdφ) = h(H−1/2
Pd

ψ,H−1/2
Pd

φ) − hPd
(H−1/2

Pd
ψ,H−1/2

Pd
φ), ψ ∈ R(P⊥

d ),
φ ∈ R(Pd) holds. The explicit formula for Γd can be extracted from [17, equation
(4.37)]. Using standard Schur complement Wilkinson’s tricks (from Numerical Lin-
ear Algebra) on the identity in (4.6) we can conclude—as has been done in [19,
equation (3.9)]—that

(4.7) I− λqΞ−1
d = Γ∗

d(I− λqW−1
d )−1Γd.

This error representation formula is the basis for our argument. Before we proceed,
note that tr(I−λqΞ−1

d ) =
∑m

i=1
µd

i −λi

µd
i

and that tr(Γ∗
dΓd) = η1(Pd)2 + · · ·+η2

m(Pd).
In particular, we have the following characterization: after setting Q := H1

0 (R),

‖Γd‖ = ηm(Pd) = max
ψ,φ∈Q
ψ,φ �=0

|h(ψ, φ) − hPd
(ψ, φ)|√

hPd
(ψ, ψ)hPd

(φ, φ)

= max
ψ,φ∈Q
ψ,φ �=0

|h(ψ, φ) − hPd
(ψ, φ)|

‖H1/2
Pd

ψ‖‖H1/2
Pd

ψ‖
= max

ψ∈Q,φ∈R(Pd)
ψ,φ �=0

|h(ψ, φ) − hPd
(ψ, φ)|

‖H1/2
Pd

ψ‖‖H1/2
Pd

ψ‖

= max
ψ∈Q,φ∈R(Pd)

ψ,φ �=0

|h(ψ, φ) − hYd
(ψ, φ)|

‖H1/2
Pd

ψ‖‖H1/2
Pd

φ‖
= max

ψ∈Q,φ∈R(Pd)
ψ,φ �=0

|h(Y ⊥
d ψ, Ydφ)|

‖H1/2
Pd

ψ‖‖H1/2
Pd

φ‖

= max
ψ∈Q,φ∈R(Pd)

ψ,φ �=0

√
h[Y ⊥

d ψ]h[Ydφ]

‖H1/2
Pd

ψ‖‖H1/2
Pd

φ‖
≤ max

ψ∈Q,φ∈R(Pd)
ψ,φ �=0

√
h[Y ⊥

d ψ]h[Ydφ]

‖H1/2
Pd

ψ‖‖H1/2
Pd

φ‖

≤ C1√
1 − ηm(Pd)

dα1 .(4.8)

We can write (4.7) as

(4.9) I− λqΞ−1
d = Γ∗

dΓd + λqΓ∗
dW

−1/2
d (I− λqW−1

d )−1W−1/2
d Γd.

Note that min
{

λ1
λq−λ1

, 1
}

≤ ν ≤ gq,ηm(Pi), for all ν ∈ Σ(|(I − λqW−1
d )−1|), and

so asymptotically it is sufficient to analyze si(W−1/2Γd), i = 1, . . . , m, i.e. the
singular values of W−1/2Γd. As in (4.8), the estimate

‖W−1/2
d Γd‖ = max

ψ∈D(HPd
),φ∈R(Pd)

ψ,φ �=0

|h(ψ, φ) − hPd
(ψ, φ)|

‖HPd
ψ‖‖H1/2

Pd
φ‖

= max
ψ∈D(HPd

),φ∈R(Pd)
ψ,φ �=0

|h(Y ⊥
d ψ, Ydφ)|

‖HPd
ψ‖‖H1/2

Pd
φ‖

≤ max
ψ∈R(Yd)⊥,ψ∈D(HPd

),φ∈R(Pd)
ψ,φ �=0

√
h[Y ⊥

d ψ]h[Ydφ]

‖HYd
ψ‖‖H1/2

Yd
φ‖

≤ ηm(Pd) ‖H−1/2
Yd

Y ⊥
d ‖(4.10)
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holds. By an analogous computation we obtain

‖W−1/2
d Γdφ‖ ≤ ‖H−1/2

Yd
Y ⊥

d ‖‖Γdφ‖, φ ∈ R(Pd),

which yields the estimate

si(W
−1/2
d Γd) ≤ ηi(Pd) ‖H−1/2

Yd
Y ⊥

d ‖, i = 1, . . . , m.

Let us now combine the assumptions (4.2) and (4.3) with (4.8) and (4.10). As-
sumptions (4.2) and (4.3) and the characterization(4.8) imply tr(Γ∗

dΓd) = O(d2α1).
Furthermore, since limd→0 ‖H−1/2

Yd
Y ⊥

d ‖ → 0, we conclude that

(4.11) lim
d→0

tr(Γ∗
dW

−1/2
d (I− λqW−1

d )−1W−1/2
d Γd)

tr(Γ∗
dΓd)

= 0.

If we now apply the trace operator tr(·) on the equation (4.9) and utilize (4.10)–
(4.11) we obtain the conclusion (4.4). The eigenvector estimate follows with the
help of Proposition 2.5. �

4.1. Remarks on possible extensions. Let us summarize the assumptions which
have been made on the way to Theorem 4.1 and examine their importance. We
assume that we have the environment Hilbert space H with the norm ‖ · ‖ and the
scalar product (·, ·). We need a positive definite (in H) and closed symmetric form
h and two sequences of orthogonal projections Pd and Yd with the properties to be
specified below.

As has already been mentioned, according to [23, Theorem VI-2.23, p. 331]
a general positive definite symmetric form h with the domain of definition Q(h)
defines in H the self-adjoint operator H such that Q(h) = D(H1/2) and h(ψ, φ) =
(H1/2ψ,H1/2φ), ψ, φ ∈ Q(h). Let λq be a discrete eigenvalue of the operator H of
multiplicity m and let Eq be the orthogonal projection onto the eigenspace of λq.
We assume that Yd is a sequence of orthogonal projections such that R(Yd) ⊂ Q(h),
dim R(Yd) < ∞ and Yd → I strongly. We use a straightforward modification of (4.1)
to define the self-adjoint operators HYd

. For details see [17, 19].

Assumptions. Now let Pd be a sequence of orthogonal projections such that
R(Pd) ⊂ R(Yd), dim R(Pd) = m, Pd commutes with HYd

and ‖Eq − Pd‖ → 0.
Also let HPd

and Ξd be the operators defined by the procedure (4.1) and let µd
i be

the eigenvalues of Ξd.

Conclusion. Then, under the abstract convergence and nondegeneracy assump-
tions, where ‖ · ‖H = ‖H1/2 · ‖ is the energy norm,

‖H−1ψ − H−1
Yd

ψ‖H ≤ C dα1 ‖ψ‖H, ψ ∈ Q(h),(4.12)

‖H−1ψ − H−1
Pd

ψ‖H ≥ c dα1‖ψ‖H, ψ ∈ R(Pd),(4.13)

we have

(4.14) lim
d→0

∑m
i=1

|µd
i −λq|
µd

i

η2
1(Pd) + · · · + η2

m(Pd)
= 1.

The proof is a verbatim reformulation of the proof of Theorem 4.1 and we omit it.
The constants α1, c and C are assumed to be independent of d and ψ and we call
µd

i the abstract Ritz values.
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The example of the Dirichlet Laplace operator serves to show that the assump-
tions (4.12)–(4.13) are plausible. In fact, the asymptotic assumptions (4.12)–(4.13)
are only made for technical convenience. The conclusion (4.14) follows under much
milder assumptions. In fact, in the proof of Theorem 4.1 we see that to prove (4.14)
it is sufficient to assume that ηm(Pd)

1−ηm(Pd) ≤ γ̃d := min
{

λlar(H)−µd
m

λlar(H)+µd
m

,
µd

1−λsmal(H)

µd
1+λsmal(H)

}
,

ηm(Pd) → 0 as d → 0 and η1(Pd) > 0, for d > 0. Here we have used λsmal(H)
and λlar(H), such that λsmal(H) < λq < λlar(H) to denote the nearest points in
Σ(H) \ {λq} to λq. In the case in which η1(Pd) = 0 for some d > 0 we have that
v ∈ R(Pd), for v an eigenvector of the operator H. This case can be considered
as trivial and excluded without reducing the level of generality. The assumptions,
(4.2)–(4.3)—and their abstract variants (4.12)–(4.13)—are, however, typically sat-
isfied by most approximation methods; cf. [14, Remark 4.1]. Also note that [20,
Theorem 3.3] yields that the assumptions ηm(Pd)

1−ηm(Pd) ≤ γ̃d, for all d and ηm(Pd) → 0
as d → 0 imply

‖Pd − Eq‖ ≤ 4
γ̃d

ηm(Pd)√
1 − ηm(Pd)

→ 0,

so we do not have to assume ‖Pd − Eq‖ → 0 explicitly.
This shows that the asymptotic exactness of our “ideal” estimators follows from

simple algebraic properties of the positive definite form h only. Given the abstract
nondegeneracy assumption, we establish our proof without any reference to finer
properties of the structure of the form h. We only use its positive definiteness. This
gives us confidence that we shall be able to apply this framework to more general
spectral problems with certain ease. This will be a subject of subsequent reports.

5. Concerning constants and computational cost

In this section we discuss what we might reasonably expect from the constant
C1(Td) appearing in Theorem 3.1 , and give a sense of the cost of computing the
bump function error estimators by providing some bounds on the condition number
and spectral radius of the corresponding linear system. All of these quantities of
interest depend only on the underlying triangulation Td, so it is natural to discuss
them together. We will make use of the following identities.

Lemma 5.1. Let τ ∈ Td be given and let zk, xk, θk, ek, Lk, hk, �k and bk, k = 1, 2, 3,
denote, respectively: vertex k, the coordinates of zk, the measure of the associated
interior angle, the edge opposite zk, the length of ek, the distance from zk to the line
containing ek, the linear basis function associated with zk and the quadratic bubble
basis function associated with ek. Furthermore, let p, q, r ∈ Z≥0. The following
hold: ∫

τ

�p
1�

q
2�

r
3 =

p!q!r!
(p + q + r + 2)!

2|τ |,
∫

ek

�p
k−1�

q
k+1 =

p!q!
(p + q + 1)!

Lk,(5.1)

‖∇�k‖2
τ =

1
2
(cot θk−1 + cot θk+1),

∫
τ

∇�k−1 · ∇�k+1 = − 1
2

cot θk,(5.2)

‖∇bk‖2
τ =

4
3
(cot θ1 + cot θ2 + cot θ3),

∫
τ

∇bk−1 · ∇bk+1 = − 4
3

cot θk,(5.3)



754 LUKA GRUBIŠIĆ AND JEFFREY S. OVALL

∇�k · (x − xk−1) = ∇�k · (x − xk+1) = �k,(5.4)

‖x − xk‖2
τ =

cot θk−1 + 3 cot θk + cot θk+1

3
|τ |2,(5.5)

For f ∈ H1(τ ), hk

∫
ek

f =
∫

τ

2f + (x − xk) · ∇f .(5.6)

Most, if not all, of these identities are well-known, and (5.1)–(5.5) can be verified
by direct computation; integration by parts yields (5.6). We will also use

g(zk, τ ) := ‖x − xk‖τ/|τ |

in what follows.

5.1. A more careful look at (3.4). A derivation of (3.4) which will give us
fairly detailed information on the constants involved and the data oscillation will
require a careful look at some Clément-like quasi-interpolation estimates and the
key arguments of Dörfler and Nochetto in [12]. For the arguments that follow,
we consider a fixed ψ ∈ L2(R); this is certainly more general than we need for
the results in Section 3, but the arguments given below do apply in more general
circumstances. To make the notation less cumbersome, we will generally suppress
explicit dependencies on ψ and Td. For any v ∈ H1

0 (R) and any Iv ∈ L(Td), we
have the well-known identity∫

R
∇(u − u1) · ∇v =

∫
R

ψ(v − Iv) −∇u1 · ∇(v − Iv) .(5.7)

We aim to bound this in terms of ‖∇ε‖ and ‖∇v‖, the data oscillation osc(ψ)—
which will be defined later—and constants which depend only on the shape regu-
larity of the mesh.

For the analysis below, we take Iv to be the modified version of the Clément
interpolant which is identical to that introduced by Carstensen [9], except near the
boundary. Our analysis is partially motivated by that in [9, 12, 28, 35], and is quite
similar at some points to that in [28]. It will be convenient for us to consider the
set V̄ of all vertices in Td, including those on ∂R. For some of the lemmas it will
also be convenient to distinguish the set of all non-Dirichlet edges which have z ∈ V̄
as a vertex; we denote this set of edges Ez.

Recall that �z is the continuous, piecewise linear function such that �z(z) = 1
and �z(z′) = 0 for z′ ∈ V̄ \{z}. We take ωz to be the support of �z. In what follows,
for f ∈ L2(R), we define

(5.8) fz =
(∫

ωz

f �z

)
/

(∫
ωz

�z

)
, If =

∑
z∈V

fz�z .

The key properties of this interpolant are that,∫
R

ψ(v − Iv) =
∑
z∈V

∫
ωz

(ψ − ψz)(v − vz)�z +
∑

z∈V̄\V

∫
ωz

ψv�z ,(5.9)

∫
R
∇u1 · ∇(v − Iv) =

∑
z∈V

∫
ωz

∇u1 · ∇[(v − vz)�z] +
∑

z∈V̄\V

∫
ωz

∇u1 · ∇(v�z) .

(5.10)
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These identities follow directly from∑
z∈V̄

�z = 1 on R,

∫
ωz

(v − vz)�z = 0 .

We first treat (5.9), and to do so we will use the following lemma.

Lemma 5.2. Let f ∈ H1
0 (R). The following hold:

For z ∈ V̄, ; ‖(f − fz)�1/2
z ‖2

ωz
≤ D2

z

π2
‖∇f‖2

ωz
,(5.11)

For z ∈ V̄ \ V , ‖f‖2
ωz

≤ κ2
z‖∇f‖2

ωz
,(5.12)

where Dz = diam(ωz) and κ2
z, given explicitly below, scales like |ωz|.

Proof. The first inequality is a direct application of recent work by Chua and Whee-
den [11, Theorems 1.1 and 1.2] on weighted Poincaré inequalities. Their work ex-
tends previous contributions by Payne and Weinberger, Acosta and Durán, and
Bebendorf [1, 8, 31]. Although the results in [11] are stated for convex domains, we
need not be concerned here with whether or not ωz is convex, because the weight
functions �z are supported in ωz.

To establish the second inequality, we take α < β and the Lipschitz function
ρ(θ) such that ωz = {z + t(cos θ, sin θ)| 0 ≤ t ≤ ρ(θ), α ≤ θ ≤ β}. Using the
Poincaré-Friedrichs’ estimate in [10, Theorem 3.1], we choose

κ2
z = 2|ωz|

∫ β

α

1 +
(

ρ′(θ)
ρ(θ)

)2

dθ .(5.13)

Recognizing that the integral is scale-invariant completes the proof. �

We are now ready to provide a bound for |
∫
R ψ(v − Iv)| in terms of ‖∇v‖ and

our first definition of oscillation of ψ.

Theorem 5.3. For v ∈ H1
0 (R), it holds that∣∣∣∣∫

R
ψ(v − Iv)

∣∣∣∣ ≤ osc1(ψ)‖∇v‖ where

osc2
1(ψ) =

3
π2

∑
z∈V

D2
z‖(ψ − ψz)�1/2

z ‖2
ωz

+ 3
∑

z∈V̄\V

κ2
z‖ψ�z‖2

ωz
.

Proof. This follows directly from using the continuous Cauchy-Schwarz inequality,
followed by the results of Lemma 5.2 with f = v, and then the discrete Cauchy-
Schwarz inequality. The “extra” factor of 3 in osc1(ψ) is due to the fact that∑

z∈V̄ ‖∇v‖2
ωz

= 3‖∇v‖2. �

We now consider the gradient terms in (5.10). To analyze them we will we collect
in the following lemma identities from [12] which are most useful to that end.

Lemma 5.4. Let ωe be the support of the quadratic bump basis function be associ-
ated with edge e ∈ Ez (see Figure 1), and let kz be constant. Let Je = Je(u1) denote
the jump in the normal derivative of u1 accross edge e. For z ∈ V, (5.14)–(5.17)
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z

Figure 1. The edge e ∈ E and ωe = supp(be).

hold, and for z ∈ V̄ \ V, (5.14)–(5.15) hold:

LeJe =
3
2

∫
ωe

∇u1 · ∇be =
1
2
kz|ωe| +

3
2

∫
ωe

(ψ − kz)be −∇ε · ∇be ,(5.14) ∑
e∈Ez

LeJe = kz|ωz| +
3
2

∑
e∈Ez

∫
ωe

(ψ − kz)be −∇ε · ∇be ,(5.15)

∑
e∈Ez

LeJe = 2
∫

ωz

∇u1 · ∇�z =
2
3
kz|ωz| + 2

∫
ωz

(ψ − kz)�z ,(5.16)

kz|ωz| = 6
∫

ωz

(ψ − kz)�z +
9
2

∑
e∈Ez

∫
ωe

∇ε · ∇be − (ψ − kz)be .(5.17)

Proof. These identities are what appear in [12], apart from our choice of sign for Je,
our notation, and the fact that we have replaced u2−u1 in each of the corresponding
identities from [12] with ε, which follows from the definition of ε. Identity (5.17)
follows from combining (5.15) and (5.16) in such a way as to eliminate the jump
terms. �

We note that for z ∈ V̄,

(5.18)
∫

ωz

∇u1 · ∇[(v − vz)�z] =
∑
e∈Ez

(
3

2Le

∫
e

(v − vz)�z

)(∫
ωe

∇u1 · ∇be

)
,

and for z ∈ V̄ \ V ,

(5.19)
∫

ωz

∇u1 · ∇(v�z) =
∑
e∈Ez

(
3

2Le

∫
e

v�z

)(∫
ωe

∇u1 · ∇be

)
.

These identities follow from integration by parts and the first equality in (5.14).
We will later use Lemma 5.4 to bound the integrals over ωe, but now we consider
the contribution of the edge integrals.
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Lemma 5.5. Let τe be a triangle having e ∈ E as an edge, z as a vertex, and ze

as the vertex opposite e. Let v ∈ H1(R). We have

3
2Le

∫
e

(v − vz)�z ≤
√

27
16|τe|

‖(v − vz)�1/2
z ‖τe

+
3g(ze, τe)

4
‖∇v‖τe

,

3
2Le

∫
e

v�z ≤
√

27
32|τe|

‖v‖τe
+

3g(ze, τe)
4

‖∇v‖τe
.

Proof. Using (5.4)–(5.6) and the continuous Cauchy-Scwarz inequality, we deduce
3

2Le

∫
e

f�z =
3

2Le

Le

2|τe|

∫
τe

2f�z + (x − xe) · ∇(f�z)

=
3

4|τe|

∫
τe

3f�z + (x − xe) · ∇f

≤ 9
4|τe|

∣∣∣∣∫
τe

f�z

∣∣∣∣+ 3g(ze, τe)
4

‖∇v‖τe
.

Above, xe are the coordinates of ze, which is the vertex opposite e in τe. The first
assertion of the lemma is finally established by choosing f = v − vz and taking the
Cauchy-Schwarz bound ‖�1/2

z ‖τe
‖f�

1/2
z ‖τe

. The second asserstion is established by
choosing f = v and the bound ‖�z‖τe

‖f‖τe
. �

Turning now to the gradient integrals over ωe, we see that inserting (5.17) into
(5.14) and regrouping terms yields, for e ∈ E and z ∈ V an endpoint of e,

∫
ωe

∇u1 · ∇be =
2|ωe|
|ωz|

∫
ωz

(ψ − kz)�z +
(

3|ωe|
2|ωz|

− 1
)∫

ωe

∇ε · ∇be − (ψ − kz)be

(5.20)

+
3|ωe|
2|ωz|

∑
ê∈Ez\{e}

∫
ωê

∇ε · ∇bê − (ψ − kz)bê .

We make the choice kz = ψz, which eliminates the first term in the previous iden-
tity. We have implicitly assumed above that all interior edges will have at least one
interior vertex as an endpoint. We make this natural and easy-to-enforce assump-
tion throughout. Using the continuous and discrete Cauchy-Schwarz inequalities
on (5.20) and (5.14), we obtain

Lemma 5.6. For e ∈ E and z ∈ V an endpoint of e, we have∣∣∣∣∫
ωe

∇u1 · ∇be

∣∣∣∣ ≤ c1(z, e)‖∇ε‖ωz
+ c2(ψ, z, e) where

c2
1(z, e) = 2

(
3|ωe|
2|ωz|

− 1
)2

‖∇be‖2
ωe

+ 2
(

3|ωe|
2|ωz|

)2 ∑
ê∈Ez\{e}

‖∇bê‖2
ωê

,

c2(ψ, z, e) =
∣∣∣∣3|ωe|
2|ωz|

− 1
∣∣∣∣ ∣∣∣∣∫

ωe

(ψ − ψz)be

∣∣∣∣+ 4|ωe|
2|ωz|

∑
ê∈Ez\{e}

∣∣∣∣∫
ωê

(ψ − ψz)bê

∣∣∣∣ ,

and for z ∈ V̄ \ V and e ∈ Ez, we have∣∣∣∣∫
ωe

∇u1 · ∇be

∣∣∣∣ ≤ ‖∇be‖ωe
‖∇ε‖ωe

+

√
8|ωe|
45

‖ψ‖ωe
.
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The last of these assertions follows directly from the definition of ε given at the
beginning of Section 3.

We make two remarks before moving on to our main theorem concerning the
gradient term (5.10). The first is to make a connection between the integral terms
in c2(ψ, z, e) and terms of the sort ‖(ψ − ψz)�z‖ωz

found in Theorem 5.3. Namely,
for f = ψ − ψz, it holds that

∫
ωe

fbe = 4
∫

ωe

f�z�z′ ≤ 4‖�1/2
z �z′‖ωe

‖f�1/2
z ‖ωe

= 4

√
|ωe|
30

‖f�1/2
z ‖ωe

.

Here, z′ is the other endpoint of e. Our second remark concerns our treatment of
boundary terms ‖ψ�z‖ωz

and ‖ψ‖ωe
for z ∈ V̄ \ V and e ∈ Ez in Theorem 5.3 and

Lemma 5.6, and it deserves special notice.

Remark 5.7. Because we are particularly interested in eigenvalue problems in this
paper, we have ψ ∈ H1

0 (R) and can therefore use (5.12) to obtain bounds on
the boundary terms ‖ψ�z‖ωz

and ‖ψ‖ωe
of the form κz‖∇ψ‖S for S = ωz or ωe.

However, for more general ψ ∈ H1, we can still obtain similar bounds for these
boundary terms. For example, the first part of Lemma 5.6 can be used for z ∈ V̄ \V
and e ∈ Ez by taking the bound c1(z′, e)‖∇ε‖ωz′ + c2(ψ, z′, e), where z′ ∈ V is the
other endpoint of e.

Using Lemmas 5.5 and 5.6, and the discrete Cauchy-Schwarz inequality gives us
a theorem concerning the gradient term (5.10).

Theorem 5.8. For v ∈ H1
0 (R), there exists a scale invariant constant C1, depend-

ing only on the mesh Td, such that

∫
R
∇u1 · ∇(v − Iv) ≤ C1‖∇ε‖‖∇v‖ + osc2(ψ)‖∇v‖,

where osc2(ψ) is defined in the proof below.

Proof. It holds that, for z ∈ V ,

∫
ωz

∇u1 · ∇[(v − vz)�z] ≤

√√√√∑
e∈Ez

c2
1(z, e)

(
27D2

z

16π2|τe|
+

9g2(ze, τe)
16

)
︸ ︷︷ ︸

c1(z)

‖∇ε‖ωz
‖∇v‖ωz

+

√√√√∑
e∈Ez

c2
2(ψ, z, e)

(
27D2

z

16π2|τe|
+

9g2(ze, τe)
16

)
︸ ︷︷ ︸

c2(ψ,z)

‖∇v‖ωz
,
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and for z ∈ V̄ \ V ,∫
ωz

∇u1 · ∇(v�z) ≤ max
e∈Ez

√
2‖∇be‖2

ωe

(
27κ2

z

32|τe|
+

9g2(ze, τe)
16

)
︸ ︷︷ ︸

c̃1(z)

√√√√∑
e∈Ez

‖∇ε‖2
ωe

2
‖∇v‖ωz

+

√√√√∑
e∈Ez

8|ωe|
45

‖ψ‖2
ωe

(
27κ2

z

32|τe|
+

9g2(ze, τe)
16

)
︸ ︷︷ ︸

c̃2(ψ,z)

‖∇v‖ωz
.

Therefore, we have∫
R
∇u1 · ∇(v − Iv) ≤ 3 max

{
max
z∈V

c1(z) , max
z∈V̄\V

c̃1(z)
}

︸ ︷︷ ︸
C1

‖∇ε‖‖∇v‖

+
√

3
∑
z∈V

c2
2(ψ, z) + 3

∑
z∈V̄\V

c̃2
2(ψ, z)

︸ ︷︷ ︸
osc2(ψ)

‖∇v‖ ,

which completes the proof. �
Combining Theorems 5.3 and 5.8 we obtain the overall main theorem of this

section, and its immediate corollaries.

Theorem 5.9. For v ∈ H1
0 (R),∫

R
∇(u − u1) · ∇v ≤ (C1‖∇ε‖ + osc(ψ))‖∇v‖,

where osc(ψ) = osc1(ψ) + osc2(ψ).

Corollary 5.10. It holds that ‖∇ε‖ ≤ ‖∇(u − u1)‖ ≤ C1‖∇ε‖ + osc(ψ).

Corollary 5.11. For ψ ∈ H1
0 (R), there exists a scale invariant constant C2, de-

pending only on the mesh Td, such that osc(ψ) ≤ C2‖∇ψ‖d2.

This last corollary follows from the definition of osc(ψ), and the use of (5.11)
and Lemma 5.2 with f = ψ. For ψ ∈ H1(R), if we still wanted a bound on the
oscillation of the sort above, we would need to handle the boundary terms z ∈ V̄ \V
slightly differently, in line with Remark 5.7.

The nearest we have found in the literature to bounds of the sort given in Corol-
lary 5.10 is the discussion of Ern and Guermond given on pages 444–445 of [15],
but the constants there are not given explicitly. We end this subsection with a
few remarks on the above discussion. The first is that Corollary 5.10 replaces both
the saturation assumption and the strengthened Cauchy-Schwarz inequality from
the traditional analysis of hierarchical basis estimators. For the sake of clarity, we
briefly state what the traditional analysis yields for our example. Suppose that
there are constants 0 < β1, β2 < 1 such that

‖∇(u − u2)‖ ≤ β1‖∇(u − u1)‖ ,(5.21) ∫
R
∇v · ∇w ≤ β2‖∇v‖‖∇w‖ for v ∈ L(Td), w ∈ B(Td) ,(5.22)
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then we have the bounds

(5.23) ‖∇ε‖ ≤ ‖∇(u − u1)‖ ≤ 1√
(1 − β2

1)(1 − β2
2)

‖∇ε‖ .

The assumption (5.21) is referred to as the saturation assumption, and its removal
from the analysis of error estimators was the motivation of [12] as well as other
work. Even though this assumption often holds asymptotically in practice, with
β1 → 0 as d → 0, the rate of convergence and the constants involved depend on u,
and are not readily accessible. At any rate, one cannot disentangle this dependence
upon u from ‖∇ε‖ in (5.23). Maitre and Musy [25] have estimated β2 solely in
terms of the triangulation. In fact, they show that

β2
2 ≤ 1

2
+

1
3

max
τ∈Td

√
cos2 θ1 + cos2 θ2 + cos2 θ3 −

3
4

.

In contrast, we have completely eliminated dependencies on any unknown quan-
tity from our constant C1. In fact, we even removed dependence upon the known
quantity ε in order to obtain a constant which depends solely on the mesh, by
taking the (probably) pessimistic bound∫

ωe

∇ε · ∇be ≤ ‖∇ε‖ωe
‖∇be‖ωe

,

in Lemma 5.6, for every edge in the mesh.

Remark 5.12. Our second remark is that the analysis of nearly all a posteriori error
estimates are derived from the fundamental identity (5.7)—notable exceptions being
those of gradient recovery type—so the analysis provided here has a good chance
of improving many known results, certainly in the sense of making all involved
constants explicitly computable. A topic of future work of the second author is
to extend the analysis given here to more general elliptic operators and boundary
conditions, and other types of error estimates, including some of gradient recovery
type.

5.2. The conditioning of the bump stiffness matrix. Finally, we consider the
cost of computing the error estimator ε(ψ, Td) ≈ u(ψ) − u1(ψ, Td). The system
matrix for the computation is given by Bij = (∇bj ,∇bi), where we recall that
bk ∈ B(Td) is the basis function associated with the interior edge ek. The matrix B
is certainly larger than the original stiffness matrix A used for computing u1(ψ, Td);
it can easily have three or four times the number of rows and columns, but never
more than five nonzeros per row. However, in contrast to the behavior of A, the
condition number of B does not deteriorate as the mesh parameter d decreases, and
the diagonal of B is such an effective preconditioner that many opt to solve the
diagonal system instead. The resulting error estimator ε̂(ψ, Td) does not lose much
of its quality (see, for example [2, Ch. 5]), and many consider the compromise for
this further speed-up to be worth it. In fact, this is precisely what is done in [29].
In either case, the cost of computing these sorts of error estimates is comparable
to other commonly used methods.

The remainder of this subsection is devoted to a more detailed look at the eigen-
values of B and its diagonal D = diag(B). In particular, we show that they are
both spectrally equivalent to the identity (and hence to each other), with reason-
able constants of equivalence under reasonable assumptions on the angles in the
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mesh. We first consider the element stiffness matrices Bτ , which in our case are
given explicitly as

(5.24) Bτ =
4
3

⎛⎝ ρ − cot θ3 − cot θ2

− cot θ3 ρ − cot θ1

− cot θ2 − cot θ1 ρ

⎞⎠ , ρ = cot θ1 + cot θ2 + cot θ3 ,

as well as its diagonal Dτ . Here and below, θi, i = 1, 2, 3, are the angles of the
triangle. The eigenvalues of Bτ are

σk =
4
3

(
ρ − 2

√
cot2 θ1 + cot2 θ2 + cot2 θ3

3
cos
(

θ + 2(k − 1)π
3

))
,(5.25)

θ = arccos

(
3
√

3 cot θ1 cot θ2 cot θ3

(cot2 θ1 + cot2 θ2 + cot2 θ3)3/2

)
, k = 1, 2, 3 .(5.26)

It holds that 0 < σ1 ≤ σ3 ≤ σ2, and

0.744 I ≤ Bτ ≤ 4.553 I , 2.309 I ≤ Dτ ≤ 2.667 I if π/4 ≤ θk ≤ π/2 ,(5.27)

0.487 I ≤ Bτ ≤ 10.373 I , 2.309 I ≤ Dτ ≤ 5.105 I if π/8 ≤ θk ≤ 3π/4 .(5.28)

Combining these elementwise estimates into estimates for the full matrices B and
D, we obtain

1.488 I ≤ B ≤ 9.106 I , 4.618 I ≤ D ≤ 5.334 I(5.29)

if all angles are between π/4 and π/2 ,

0.974 I ≤ B ≤ 20.746 I , 4.618 I ≤ D ≤ 10.210 I(5.30)

if all angles are between π/8 and 3π/4 .

To obtain the bounds on B from those on Bτ we use that, for w =
∑

e∈E cebe,

cT Bc =
∫
R
∇w · ∇w =

∑
τ∈T

∫
τ

∇w · ∇w =
∑
τ∈T

cτ
T Bτcτ ,(5.31)

where c is the vector of coefficients of w with respect to the basis and cτ contains
only those coefficients corresponding to the (interior) edges of τ . Therefore,

λmin(B)‖c‖2 ≥ min
τ∈T

λmin(Bτ )
∑
τ∈T

‖cτ‖2 = 2 min
τ∈T

λmin(Bτ )‖c‖2,(5.32)

λmax(B)‖c‖2 ≤ max
τ∈T

λmax(Bτ )
∑
τ∈T

‖cτ‖2 = 2 max
τ∈T

λmax(Bτ )‖c‖2 .(5.33)

The argument for the diagonal matrices is similar, but simpler. These estimates
give a rough sense of what can be expected of the bump stiffness matrix B. In
particular, we see that B is already pretty well conditioned, and that D provides a
very good preconditioner.
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Figure 2. The unit square, L-shaped, and dumbbell domains to-
gether with their initial triangulations.

6. Experiments

In this section we provide experiments for the model problem on three different
domains which illustrate the effectivity of our estimates ηi(Bd, Pd) of the approxi-
mation defects ηi(Pd), which, in turn, are estimates of the relative eigenvalue and
eigenvector errors. In particular, we focus on the quality of our trace-type estimates

(6.1) EFF =

∑m
i=1

|µd
i −λq|
µd

i∑m
i=1 η2

i (Bd, Pd)

for both single (possibly) degenerate eigenvalues, such as λq in the above equa-
tion, or clusters of eigenvalues which may include degenerate members. We recall
that our model problem is the Dirichlet Laplace eigenvalue problem: −∆u = λu
in Ω, u = 0 on ∂Ω. The three domains under consideration are the unit square,
the L-shaped domain consisting of a concatenation of three unit squares, and the
dumbbell domain consisting of two π × π squares connected by a π/4× π/4 square
(see Figure 2). The unit square was chosen because of the exact knowledge of
its eigenvalues and vectors and the fact that it has many degenerate eigenvalues
in the lower part of its spectrum. The L-shaped domain appears frequently in
the literature as one of the simplest domains for which analytic solutions of the
eigenvalue problem are not generally known. The dumbbell domain provides ex-
amples of many pairs (and larger collections) of eigenvalues which just barely miss
being degenerate, because the small bridge between the two larger squares has a
symmetry-breaking effect. Although exact eigenvalues are not generally known for
the latter two domains, Trefethen and Betcke [33] have computed several of them
to a high degree of accuracy, and we will use their computed values as the “exact”
values in our effectivity tests.

The code used for the experiments was written by the second author in MAT-
LAB, and makes use of its linear solver and eigenvalue solvers—EIGS for the large
sparse generalized eigenvalue problems coming from the finite element discretiza-
tions, the “backslash” operation2 for computing the approximate error functions
ε(µd

i ψ
d
i , Td), and EIG for the small generalized eigenvalue problems needed to com-

pute our estimates of the approximation defects, η2
i (Bd, Pd). We also use MAT-

LAB’s sparse matrix format. The data structures for the triangulation are triangle-
based, and are modeled after those found in PLTMG [4]. For adaptive refinement,

2Because our main emphasis in these experiments is to illustrate the effectivity of our estimator
(not necessarily to do things in the fastest possible way), and because the asymptotic behavior of
our estimators is observed even for relatively small problems, we have not bothered to use a fast
iterative solver for the computation of the ε(µd

i ψd
i , Td).
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we use Rivara’s backward-longest-edge bisection algorithm [32] for marked trian-
gles. The marking strategy is based on the local indicators

m∑
i=1

‖∇ε(ψ̄d
i , Td)‖2

τ

‖∇ε(ψ̄d
i , Td)‖2 + ‖∇u1(ψ̄d

i , Td)‖2
,

where ψ̄d
i ∈ R(Pd) is an argument satisfying

‖∇ε(ψ̄d
i , Td)‖2

‖∇ε(ψ̄d
i , Td)‖2 + ‖∇u1(ψ̄d

i , Td)‖2
= η2

i (Bd, Pd) .

The triangles whose indicators are larger than the median are marked. Certainly
other marking strategies and indicators could be used; if one wished to use a weight-
ing which favored certain approximation defects (relative errors) more heavily than
others, then the approach described above could be modified accordingly. Addi-
tionally, one could also include local indicators based on the data oscillations (or
some suitable simplification of them) for the marking strategy. This might be par-
ticularly useful in the early stages of adaptive refinement if larger eigenvalues (with
highly oscillatory eigenvectors) are to be approximated.

Remark 6.1. We emphasize that, although the η2
i (Bd, Pd) and the corresponding

local indicators are computed using the basis for R(Pd) which is given by the eigen-
solver, the actual computed quantities are basis-independent. This is a very
useful quality to have for error estimation and adaptive refinement, especially in
the case of degenerate eigenvalues, because one may have little control over the basis
computed by the eigensolver. In particular, the computed bases may “drift” as the
mesh is refined either uniformly or adaptively—meaning that, although the bases
for two different meshes both span spaces which approximate the true invariant
subspace, the bases themselves are only approximately equal up to an orthogonal
transformation. Moreover, for solvers such as EIGS, the computed basis may be
different for consecutive calls on the same mesh! At any rate, an ideal mesh for a
given problem should be well-suited for the entire invariant subspace, and not just
to a given basis.

6.1. The unit square. As mentioned above, the eigenvalues and eigenvectors are
explicitly known in this case. Namely, we have

(k2 + n2)π2 paired with 2 sin(kπx) sin(nπy),

with the eigenfunctions as given above forming an orthonormal basis for the com-
plete eigenspace. For our first experiment, we approximate the smallest six eigen-
values

10π2 , 10π2 , 8π2 , 5π2 , 5π2 , 2π2

having two simple eigenvalues and two degenerate pairs. In Table 1 we see the
computed Ritz values in descending order, together with the effectivity indices
(6.1) for our estimates of the relative error in approximating these eigenvalues at
various levels of adaptive refinement; N indicates the number of degrees of freedom
for the problem. We remark that the asymptotic behavior indicated by (4.4) and
(3.13) is observed immediately, with nearly perfect effectivity observed throughout
the refinement process. For this experiment and the analogous ones for the other
domains, we observe approximately O(N−1)-convergence, which corresponds to the
optimal O(h2) convergence rate in the case of quasi-uniform meshes. Although we
do not express these computations in table form for this problem, they can be
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deduced from the exact eigenvalues and the information given in Tables 1, 3 and 4,
and are shown graphically in the case of the L-shaped domain below.

Table 1. Eigenvalue estimates and effectivity indices for the unit square.

N µ6 µ5 µ4 µ3 µ2 µ1 EFF
45 113.1352 112.4708 91.0246 53.3258 53.3074 20.4309 1.1270
111 106.5602 106.1753 82.5317 50.9809 50.9774 19.9609 1.0852
295 101.6302 101.3446 80.7847 50.1042 50.0528 19.8777 1.0742
731 99.7023 99.6333 79.7179 49.6299 49.6294 19.7851 1.0634
1765 99.2275 99.1885 79.2009 49.4685 49.4685 19.7592 1.0619
4248 98.8957 98.8811 79.1084 49.4033 49.4031 19.7494 1.0546

To illustrate the implications of (4.5) and (3.13), we first reconsider the statement
of (4.5). The evaluation of the formula (4.5)—for multiple eigenvalues—is not easy
within a practical numerical procedure. The problem is that the formula (4.5)
assumes that the finite element eigenvalue procedure has returned the Ritz vectors
which are matched to the eigenvectors from the invariant subspace in the sense of
Proposition 2.5. For practical tests we will study the quotients minψ∈R(Pd) ‖∇ψ −
∇vi‖2/‖∇vi‖2 rather than the quotients ‖∇ψd

i −∇vi‖2/‖∇vi‖2, which appeared in
(4.5). According to the analysis of Beattie [7] these quotients have essentially the
same asymptotic behavior. Statement (4.5) can now be expressed as

(6.2) lim
d→0

∑m
i=1

minψ∈R(Pd) ‖∇ψ−∇vi‖2

‖∇vi‖2∑m
i=1 η2

i (Pd)
= 1 ,

where we recall that the vi form an orthonormal eigenbasis for the invariant sub-
space which we are trying to approximate with R(Pd). A direct computation shows
that

minψ∈R(Pd) ‖∇ψ −∇vi‖2

‖∇vi‖2
= 1 −

m∑
j=1

λi

µj

(∫
R

viψ
d
j

)2

= sin2 ∠(vi, R(Pd)) +
m∑

j=1

µj − λj

µj

(∫
R

viψ
d
j

)2

,(6.3)

so it is clear, at least theoretically, how to compute the numerator in (6.2). In
the equation above, ∠(vi, R(Pd)) is the angle between vi and the subspace R(Pd).
Furthermore, the result (4.4), together with the sin Θ theorem from [20] proves
the conclusion (6.2). A second natural measure of the effectivity of our computed
ηi(Bd, Pd) is

(6.4) EFF2 =

∑m
i=1

minψ∈R(Pd) ‖∇ψ−∇vi‖2

‖∇vi‖2∑m
i=1 η2

i (Bd, Pd)
,

and we investigate it in the following experiment.
For this experiment, we consider the degenerate eigenpairs

λ2 = λ3 = 5π2 , v2 = 2 sin πx sin 2πy , v3 = 2 sin 2πx sin πy ,
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Table 2. Eigenvector estimates and effectivity indices for the unit
square and the degenerate eigenvalue λ2 = λ3 = 5π2.

N 9 29 73 215 589 1385 3369
EFF2 1.7255 1.1744 1.1119 1.0721 1.0637 1.0633 1.0534

Figure 3. Adaptively refined meshes for the unit square and the
degenerate eigenvalue λ2 = λ3 = 5π2, having N = 2193 and N =
3369 degrees of freedom.

and see how closely (6.4) comes to the predicted asymptotic behavior (6.2). The
results of this experiment are given in Table 2. We see that the asymptotically
optimal behavior of the ηi(Bd, Pd) is realized even for coarse meshes. The quantities
in the numerator of (6.4) are computed using a twelve-point quadrature rule—which
is exact for polynomials of degree six—so the initial effectivity estimates are slightly
inflated due to quadrature error. Pictures of the final two adapted meshes for this
experiment are given in Figure 3.

6.2. The L-shaped domain. Although some of the eigenvalues and eigenvectors
for the L-shaped domain are known explicitly, most are not. We take the highly
accurate values computed by Trefethen and Betcke for the six smallest eigenvalues

41.474510, 31.912636, 29.521481, 19.739209 (2π2), 15.197252, 9.6397238

and perform the analogous experiment as was done for the square domain. In Ta-
ble 3, we show the individual effk = rk/η̃2

k as well as the total effectivity EFF . This
differs from the way we present tabular data for the Square and Dumbbell problems
in Table 1 and Table 4, and we do it to give more explicit information about how
well the individual approximation defects η̃2

k track the behavior of the individual
relative errors rk = |λk − µk|/µk. This information is also given graphically in
Figure 4, were we see that the individual approximation defects η̃2

k and their sum
η̃2 =

∑
η̃2

k do an excellent job of modeling the behavior of the individual relative
errors rk and their sum r =

∑
rk. We also see in Figure 4 that these relative

errors are converging at nearly the optimal rate O(N−1); the line with slope −1 is
given as a reference. In reference to Table 3, we point out that although we expect
EFF → 1 theoretically, nothing in the experiments is computed exactly, so 1.05
(which is very good) is about as good as we see in practice. It is also clear in the
table that the adaptive process, which is aimed at reducing the collective relative
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error r (as opposed to reducing each rk individually), means that some rk may be
better approximated by their respective η̃2

k than others at each stage. In particular,
we see here that η̃2

6 tends to do the best job of approximating r6, while η̃2
1 tends to

do the worst job; although 1.2 is still a respectable effectivity.

Table 3. Individual and total effectivity indices for the L-shaped domain.

N eff6 eff5 eff4 eff3 eff2 eff1 EFF
36 1.1413 1.1829 1.1780 1.1390 1.2196 1.1092 1.1617
110 1.1166 1.0989 1.0870 1.0843 1.0897 1.2348 1.1107
272 1.0358 1.1523 1.0914 1.0635 1.1412 1.1683 1.0970
680 1.0581 1.0460 1.0534 1.0568 1.1105 1.1788 1.0700
1689 1.0338 1.0856 1.0663 1.0728 1.0664 1.1957 1.0747
3998 1.0280 1.0747 1.0693 1.0669 1.0816 1.1889 1.0718

Table 4. Eigenvalue estimates and effectivity indices for the
dumbbell domain.

N µ6 µ5 µ4 µ3 µ2 µ1 EFF
85 5.6138 5.6138 5.5491 5.5184 2.0846 2.0809 1.1725
243 5.2183 5.2128 5.0333 5.0083 1.9967 1.9929 1.1130
650 5.0778 5.0765 4.9095 4.8847 1.9759 1.9718 1.1065
1693 5.0279 5.0278 4.8630 4.8345 1.9673 1.9626 1.1058
4274 5.0093 5.0093 4.8428 4.8143 1.9630 1.9583 1.0944

6.3. The dumbbell domain. Again we take the smallest six highly accurate
eigenvalues computed by Trefethen and Betcke,

4.9968508, 4.9968371, 4.8298953, 4.8007611, 1.9606830, 1.9557938

and again we perform the analogous experiment. As noted in [33], the effect of
the small “bridge” between the two π × π squares is to take the smallest three
eigenvalues of a single π × π square—namely 5, 5 and 2—and split them into
nearly degenerate pairs. In Table 4, we again see excellent effectivity even for
coarse triangulations. Figure 5 illustrates how our adaptive refinement procedure
captures the singular behavior of the invariant subspace associated with the six
smallest eigenvalues (particularly eigenvalues 3 and 4).
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Figure 4. Log-log plots showing the convergence of the relative
eigenvalue errors (top) as well as the their corresponding approxi-
mation defects for the L-shaped domain.

Figure 5. Adaptively refined meshes for the dumbbell domain,
having N = 4274 degrees of freedom.
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7. Conclusion

The primary goals of this paper were two-fold:

(1) To establish the equivalence of the approximation defects ηi(Pd) and the
corresponding relative eigenvalue and eigenvector errors.

(2) To provide a practical means of estimating these approximation defects
which is provably effective and reliable.

With regard to the first aim, asymptotic exactness was proven in a very general
setting, and detailed bounds were also given which always hold. The definition of
the approximation defects is such that it is natural to derive estimates for them
using the well-developed theory of a posteriori error estimation for elliptic bound-
ary value problems. In principle, one could incorporate a number of different a
posteriori techniques in our framework, and we mentioned the use of gradient re-
covery techniques explicitly, but our focus was on estimates of hierarchical type,
ηi(Bd, Pd) ≈ ηi(Pd). For this type of estimator we asserted asymptotic exactness
for the model problem on convex domains, and also gave detailed bounds which
always hold—complementing the results mentioned above. Experiments verified
the effectivity of our estimates of the approximation defects as trustworthy indi-
cators of relative eigenvalue/eigenvector errors. In addition to the strengths of
our approach mentioned above, we highlight three more. The case of degenerate
eigenvalues is treated very naturally in our framework, requiring no special mod-
ification, and we need no assumptions concerning the convexity/non-convexity of
the domain. Additionally, the approximation defects and their estimates truly are
basis-independent, so one truly obtains information about how well the subspace
R(Pd)—given in terms of some basis by whatever eigensolver is used—approximates
the true invariant subspace of interest.

We finish with a brief outlook for future work in this area. All of our analysis
was done in the context of piecewise linear finite elements, and the analysis of
our hierarchical basis estimates was carried out only for the Laplacian with zero
Dirichlet conditions. One clear direction in which our results can be extended is to
consider more general elliptic operators and boundary conditions. Item (1) above
is already dealt with in principle by the arguments given in this paper, so further
work in this direction is really to prove something analogous to Theorem 3.1 in
the more general setting. Some of the necessary modifications to our arguments
are obvious, but others will require a more detailed look. Another area of future
work is to provide similar analysis for other eigenvalue approximation methods,
such as those arising from hp-finite element discretizations. The hp-approach is
in particular well-suited for eigenvalue problems, because of the higher order of
smoothness of the eigenfunctions away from (nonconvex) boundaries and regions of
discontinuity of the coefficients of the differential operator.
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