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Abstract We present a new algorithm, based on integral equation formulations,
for the solution of constant-coefficient elliptic partial differential equations (PDE)
in closed two-dimensional domains with non-smooth boundaries; we focus on cases
in which the integral-equation solutions as well as physically meaningful quantities
(such as, stresses, electric/magnetic fields, etc.) tend to infinity at singular boundary
points (corners). While, for simplicity, we restrict our discussion to integral equa-
tions associated with the Neumann problem for the Laplace equation, the proposed
methodology applies to integral equations arising from other types of PDEs, including
the Helmholtz, Maxwell, and linear elasticity equations. Our numerical results dem-
onstrate excellent convergence as discretizations are refined, even around singular
points at which solutions tend to infinity. We demonstrate the efficacy of this algo-
rithm through applications to solution of Neumann problems for the Laplace operator
over a variety of domains—including domains containing extremely sharp concave
and convex corners, with angles as small as π/100 and as large as 199π/100.
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1 Introduction

The problem of evaluating numerical solutions of partial differential equations (PDE)
under conditions that give rise to solution singularities (such as reduced differentiabil-
ity and/or blow-up) is one of fundamental importance in science and engineering—yet,
a wide variety of such problems have not been adequately addressed from a compu-
tational perspective. In this paper, we consider a prototypical problem of this type,
namely, solution of the Neumann problem for Laplace’s equation in domains contain-
ing corners. For this problem, the associated integral-equation solutions, along with
the physical fields, tend to infinity at the singular points. The methodology we pro-
pose, which is based on use of Nyström discretization of integral equations and exact
cancellation of blow-up terms, applies to a variety of other problems for which inte-
gral formulations exist, including two- and three-dimensional problems concerning
potential theory, scattering and diffraction in areas such as electromagnetics, acous-
tics and solid mechanics. In this paper, we introduce our algorithm and establish the
high-order accuracy of the forward operator; the mathematical analysis of stability
and convergence of the method, which are amply demonstrated in this text through a
variety of numerical examples, is left for future work. We emphasize that, in particu-
lar, the numerical solutions produced by our approach capture the blow-up of physical
quantities with a high degree of accuracy.

A variety of high-order integral equation methods for two- and three-dimensional
problems in domains with smooth boundaries have been available for some time
[9,21,35,45]. Both high- and low-order accurate integral equation methods for non-
smooth domains have been put forward as well [1,10,12,13,18,19,27,28,38]; the
references [1,38] are representative of a significant portion of the (sizable) literature
on high order integral equation approaches. The literature related to reference [1] is
discussed in some detail later in this text. The approach represented by the contribution
[38], in turn, relies on use of first kind (singular or hypersingular) integral equations
and high-order (Galerkin) boundary element methods; such approaches, which apply
both to Dirichlet and Neumann problems and are theoretically sound, require costly
evaluation of matrix elements and, for cases in which the integral equation solutions
are unbounded, have, in practice, given rise to limited accuracies; see e.g. [26].

While not the focus of this paper, for completeness we mention previous
contributions concerning finite element methods (FEM) for PDEs on domains with
geometric singularities. Although, in contrast with integral equation methods, the
FEM give rise to sparse systems of linear equations, these approaches are not com-
petitive with integral-equation methods in some circumstances—since the lower-
dimensional integral-equation discretizations can be exploited through use of fast
solvers [7,9,43,41], which, when applicable, can outperform their FEM counterparts
to very significant extents. FEM based approaches for boundary value problems in
domains with singular boundaries are very important in a number of fields, however,
and a rich literature has been developed in this area. In [3–5,15–17], for example,
spatially refined meshes are used near regions of geometric singularity. An alterna-
tive approach, in which the known singular behavior is explicitly incorporated into
the Galerkin basis, is discussed in [20,29,37,44]. In the “DtN finite element method”
approach [25,52,53] neighborhoods of corner singularities are identified, and a new
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A high-order integral algorithm for highly singular PDE solutions 151

boundary value problem is posed on the complement of the corner neighborhoods by
means of artificial boundary conditions obtained via Dirichlet-to-Neumann maps.

Focusing on previous Nyström methodologies, which are closer in spirit to the
approach put forward in the present contribution, on the other hand, we mention
[2,22,36]; the extensive literature in this area is discussed in [1, Chap. 8]. Each of
these contributions employs special graded-mesh quadratures to achieve high-order
accuracy in the solution of the Dirichlet problem in two-dimensional domains with
corners by means of second-kind integral equations. A direct extension of this meth-
odology to the Neumann case does not generally give rise to highly accurate solutions.
A key theoretical and practical difference between the Dirichlet and Neumann prob-
lems in this regard, is that the solutions of the corresponding integral equations are
bounded for the former (if the integral equations are selected appropriately), while they
are unbounded (at corners) for the latter. The contribution [40], which, like [2,22,36],
is based on use of changes-of-variables and graded meshes, considers solutions of both
Dirichlet and Neumann problems and has produced results of significant accuracy. As
demonstrated in Sect. 5, such an approach does not completely resolve the singular
corner behavior in the Neumann case, and thus it

1. Cannot yield high accuracies for Neumann problems around corner points, unless
expensive, highly refined integration rules are used to evaluate integrals of the
products of basis functions and the very highly peaked composition of the nearly
non-integrable kernel and the graded-mesh change-of-variables. Even using such
expensive integration rules, and for the mild angles considered, the approach [40]
yields, for a given discretization size, significantly lower accuracies, by several
orders of magnitude, than the present method; and

2. Owing to subtractive cancellations, it leads to diminishing accuracies as discretiza-
tions are refined beyond a certain level—yielding limited or no accuracy for prob-
lems which, like the sharp-angle problems mentioned below in this text, require
fine sampling meshes.

Relying on analytical cancellation of singularities and special treatment of nearly
non-integrable integrands (see Remark 3.1 and Sect. 5), the approach we present in
this contribution eliminates these difficulties and enables highly efficient high-order
Nyström solution of the general Neumann problems. In this method, the leading sin-
gularity of the solution of the integral equation is treated separately, while the more
regular remainder is handled using graded-mesh quadratures, so that cancellations
errors are eliminated and high order accuracy is achieved without recourse to highly
refined submeshes. We demonstrate the efficacy of this algorithm through applica-
tions to solution of Neumann problems for the Laplace operator over a variety of
domains—including domains containing extremely sharp concave and convex cor-
ners, with angles as small as π/100 and as large as 199π/100.

The remainder of this paper is organized as follows: In Sect. 2, we introduce the
PDE and associated second-kind integral equations, and we derive the leading asymp-
totics of the integral-equation solutions. Section 3 presents our method for treatment
of the unbounded behavior of these solutions and the corresponding cancellation of
infinities that occurs in the corresponding integral equations. In Sect. 4, in turn, we
describe our discretization and solution methods. The difficulties mentioned in points
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(1) and (2) above are demonstrated in Sect. 5. In Sect. 6, finally, we present several
experiments which demonstrate the efficacy of our approach.

2 Integral equation formulations

2.1 Neumann problems

Let � ⊂ R
2 be an open, bounded domain, with a piecewise smooth Lipschitz bound-

ary � = ∂�. For clarity, we assume that the domain boundary ∂� contains a single
corner point and is otherwise smooth; in particular, as shown in Fig. 1, the corner lies
at the intersection of two smooth sub-arcs �1 and �2, which meet with an interior
angle equal to απ for some 0 < α < 2, α �= 1. Throughout this paper the corner
point is assumed to lie at the origin x = 0; the extension of our methods to problems
containing multiple corners is straightforward.

We consider Neumann problems for the Laplace equation in interior and exterior
domains with boundary �: for given Neumann data satisfying

∫

�

g d S = 0 (2.1)

and denoting by ν the outward unit normal, we seek solutions of the boundary value
problems

�ui N = 0 in �,
∂ui N

∂ν
= g on �, (2.2)

�ueN = 0 in R
2\�, ∂ueN

∂ν
= g on �, ueN (x) = o(1) as |x | → ∞. (2.3)

Remark 2.1 Throughout this paper we assume the Neumann data g is bounded, and
of class Cm on �\0 with m ≥ 2. Furthermore, we assume that g ∈ Cm(�k), k = 1, 2.

The solution of the exterior problem is unique. The solution of the interior problem,
in turn, is unique up to an additive constant; taking a point x0 ∈ � and a κ ∈ R, we
determine uniquely the solution of the interior Neumann problem by requiring

ui N (x0) = κ. (2.4)

Γ1

Γ2

Γ2

Γ1

α π

Γ

Ω
Γ

α π Ω

Fig. 1 Generic domains with acute and obtuse interior angles at the corner
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2.2 Integral equations

Our algorithms for solution of these Neumann problems are based on use of the fun-
damental solution

G(x, y) = 1

2π
ln

1

|x − y| ,

representation formulae, and associated integral equations. For the interior Neumann
problem, for example, we use the well known representation formula

ui N (x) =
∫

�

G(x, y)φ(y) d S(y)− ūe for x ∈ � ūe =
∫

�

G(x0, y)φ(y) d S(y)− κ,

(2.5)

where the density φ satisfies the integral equation

φ(x)

2
+

∫

�

∂G(x, y)

∂ν(x)
φ(y) d S(y)=g(x) for x ∈ �\{0},

∫

�

φ(y) d S(y) = 0.

(2.6)

Analogously, for the solution ueN of the exterior Neumann problem we use the rep-
resentation formula

ueN (x) = −
∫

�

G(x, y)φ(y) d S(y) for x ∈ R\�, (2.7)

where φ satisfies the integral equation

φ(x)

2
−

∫

�

∂G(x, y)

∂ν(x)
φ(y) d S(y) = g(x) for x ∈ �\{0},

∫

�

φ(y) d S(y) = 0.

(2.8)

As shown in [31,48], the integral equations (2.6) and (2.8) are uniquely solvable in
L2

0(�) = {φ ∈ L2(�) : ∫
�
φ d S = 0} where, of course, L2(�) is the space of square

integrable functions on �.

2.3 Leading asymptotics

Following the presentation [54] we obtain the leading asymptotics of the solutions of
Eqs. (2.6) and (2.8) near the corner; these asymptotic expressions are crucial compo-
nents of our algorithms. To obtain the desired asymptotics we first note that, as shown
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in [54] by consideration of the Green formulae, the solution of Eq. (2.8) is given by

φ = g + ∂ui D

∂ν

where ui D is the unique solution of the complementary interior Dirichlet problem
�ui D = 0 in � with boundary conditions ui D = −ueN on �. Analogously, it is easy
to show that the solution of Eq. (2.6) equals

φ = g + ∂ueD

∂ν

where ueD is the unique solution of the exterior Dirichlet problem�ueD = 0 in R
2\�

with ueD = −ui N on � and ueD bounded at infinity.
Clearly, the leading asymptotics of the solutions φ of Eqs. (2.6) and (2.8) are deter-

mined by the corresponding asymptotics of the normal derivative of the solution of the
complementary Dirichlet problems. The asymptotic behavior of solutions of Dirich-
let and Neumann problems in domains with corners is discussed in a wide range of
contributions, including [11,14,23,24,39,34,49–51,54]; the references [11,33,49,54]
are particularly relevant in the present context since, like the present work, they do
not assume that � coincides with a pair of straight segments near the corner. Letting
r = |x | be the distance to the corner, in what follows we consider the asymptotics of
the relevant Dirichlet problems in corner-type domains for which the �1 and �2 are
general smooth curves (not necessarily straight segments), and we thus determine the
asymptotic behavior as r → 0 of the solution φ: we obtain (see also [54])

(INA) Interior Neumann problem, Acute angle (0 < α < 1): for some constant a,

φ = ar
1

2−α−1 + o(1).
(INO) Interior Neumann problem, Obtuse angle (1 < α < 2): for some constant a,

φ = ±ar
1
α
−1+o(1), where the + (respectively −) sign gives the asymptotics

as x approaches the corner along �1 (resp. �2); see Fig. 1.
(ENA) Exterior Neumann problem, Acute angle (0 < α < 1): for some constant a,

φ = ±ar
1

2−α−1 + o(1), where the + (respectively −) sign gives the asymp-
totics as x approaches the corner along �1 (resp. �2); see Fig. 1.

(ENO) Exterior Neumann problem, Obtuse angle (1 < α < 2): for some constant

a, φ = ar
1
α
−1 + o(1).

Remark 2.2 Note that, in each one of these cases, the solutions φ of the integral equa-
tions (2.6) and (2.8) blow up as r → 0 along �, a fact that was recognized at least as
early as 1949 [39].

In order to keep the presentation self-contained, and to provide necessary details
that were absent from previous presentations for cases in which �1 and �2 are arbi-
trary smooth arcs, in what follows we present proofs of these facts. We thus establish
the asymptotic relations (INA) and (INO) on the basis of the previous results [49,
Theorem 3.1 and Theorem 3.3] on PDE solution asymptotics; the particular cases of

123



A high-order integral algorithm for highly singular PDE solutions 155

those theorems that are needed in our context are stated below as Theorem 2.3. The
relations (ENA) and (ENO) follow similarly.

Theorem 2.3 Let D be an open set in the z = x1 + i x2 plane, part of whose boundary
consists of two analytic arcs �1 and �2, which meet at the origin, where they form
an angle βπ > 0 (interior to D). We assume that � j ( j = 1, 2) is an open arc of
an analytic curve of which the origin is a regular point. Let m ≥ 2 be an integer. Let
u(x1, x2) = u(z) satisfy�u = f in D, where f is of class Cm in D ∪ �1 ∪ �2 ∪ {0};
and let gi be a function of arc length which is of class Cm on � j ∪ {0}, j = 1, 2.

Dirichlet case: Suppose that u = g j on � j , j = 1, 2. Then for z → 0, z ∈
D ∪ �1 ∪ �2, u(z) has an asymptotic expansion

u(z) = log z Q1 + log z̄ Q2 + Q3 + o(zm−ε) for any ε > 0,

where Q1, Q2 and Q3 are polynomials in z, z̄, z1/β and z̄1/β if β is irrational, and
in z, z̄, z1/β, z̄1/β, zq log z and z̄q log z̄ if β = p/q, (p, q) = 1. If g1(0) = g2(0),
then Q1 and Q2 vanish identically. Furthermore, expansions for derivatives of u(z)
of order ≤ m − 1 may be obtained by differentiating formally.

Neumann case: Suppose that ∂u/∂ν = g j on � j , j = 1, 2. Then for z → 0,
z ∈ D ∪ �1 ∪ �2, u(z) has an asymptotic expansion

u(z) = log z Q1 + log z̄ Q2 + Q3 + o(zm+1−ε) for any ε > 0,

where Q1, Q2 and Q3 are polynomials in z, z̄, z1/β and z̄1/β if β is irrational, and in
z, z̄, z1/β, z̄1/β, zq log z and z̄q log z̄ ifβ = p/q, (p, q) = 1. If u(z) is bounded at the
origin, then Q1 and Q2 vanish identically. Furthermore, expansions for derivatives
of u(z) of order ≤ m may be obtained by differentiating formally.

To establish (INA) and (INO) we first show that the solution ui N of Eq. (2.2) is
bounded, for which, in turn, we consider the solution vi D of the Dirichlet problem
conjugate to Eq. (2.2) in�—see [32, pp. 102–103, probs. 6,8]. The boundary values of
vi D equal an integral (primitive) ĝ of g along the boundary �; note that, importantly,
in view of Eq. (2.1) ĝ is continuous at the corner. We deduce from the Dirichlet case
of Theorem 2.3 that vi D is bounded, and that its leading asymptotic behavior is given
by

vi D = const.+ r1/α(c1 cos(θ/α)+ c2 sin(θ/α))+ O(rmin{2/α,2}−ε), (2.9)

where ε is an arbitrarily small positive number. Taking an arbitrary point x̄ ∈ �,
because of the conjugacy relationship between ui N and vi D , for all x ∈ � we have

ui N (x) = ui N (x̄)+
x∫

x̄

(vi D
x1

dx2 − vi D
x2

dx1), (2.10)

where the integral can follow any path in � between x̄ and x . In view of the fact that
the asymptotics (Eq. 2.9) can be formally differentiated, the integrand in Eq. (2.10)
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is bounded by rγ for some γ > −1 and is thus uniformly integrable for x in the
closure of�. It follows easily that ui N is bounded, as claimed. Having established the
boundedness of ui N , we conclude from the Neumann case of Theorem 2.3 that, for
any ε > 0, as x → 0

ui N (x) = ui N (x1, x2) = 	(Pm(z)+ Rm(z)), (2.11)

where Pm is either a polynomial in {z, z̄, z1/α, z̄1/α} (if α ∈ I = R\Q), or a poly-
nomial in {z, z̄, z1/α, z̄1/α, zq ln z, z̄q ln z̄} (if α = p/q ∈ Q, (p, q) = 1), and where
|Rm(z)| = o(zm+1−ε).

Recalling that the solution ueD of the complementary exterior Dirichlet problem
has boundary values ueD = −ui N , we seek to obtain the needed asymptotics of ueD

via an application of the Dirichlet case of Theorem 2.3. To take advantage of this
result, however, we must at first address the fact that the boundary values of −ui N

do not satisfy the smoothness assumptions of this theorem. To do this we assume,
without loss of generality, that, at the origin, �1 and �2 are tangent to the rays θ = 0
and θ = απ , respectively. And, further, we show that, in the present context, (2.11)
may be re-expressed as

ui N = ui N
1 + ui N

2 (2.12)

where ui N
2 ∈ C2(� j ), j = 1, 2, and where ui N

1 is given by an expression of the form

ui N
1 =

3∑
k=1

c1k rk/α cos
kθ

α
+ c2 r2(ln r cos 2θ − θ sin 2θ)

+ r1+1/α
(

c3 sin
(1 + α)θ

α
+ c4 cos

(1 + α)θ

α

)
. (2.13)

In order to establish Eq. (2.12) from Eq. (2.11) we note that ui N cannot contain a
term of the form r1/α sin θ

α
, since, as is easily checked, such a term would require

the Neumann data g = ∂ui N

∂ν
to be unbounded at the corner. Terms corresponding to

the imaginary parts of {z2/α, z3/α, z1+1/α, z2 ln z}—their real parts are represented
in ui N

1 —can be seen to be of class C2 on � j , j = 1, 2, so they are included in ui N
2 . We

note, further, that the terms of the form A = {|z|2/α, zz̄1/α, z2/α z̄1/α} cannot be part
of ui N

1 since, depending on the specific values of α, these terms are either smooth (and
must thus be included in ui N

2 ) or they have an unbounded Laplacian (and thus cannot
be part of Eq. (2.11) in the first place). Note, finally, that the coefficient c2 can only be
non-zero when α is rational and satisfies 0 < α < 2 and α �= 1—that is, α = 1/2 or
α = 3/2.

Having determined the singular part ui N
1 of ui N , we letχ be a smooth cutoff function

which is identically 1 in a neighborhood of the origin and vanishes outside some disc,
and we construct a function ueD

1 which is harmonic in R
2\�, such that ui N

1 + χueD
1 ,

and hence ui N + χueD
1 , is of class C2 on � j , j = 1, 2—this is what is needed to

determine the asymptotic behavior of ueD = χueD
1 + ueD

2 via Theorem 2.3. One can
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verify by direct computation that ueD
1 given by

− ueD
1 =

3∑
k=1

c1k sec
kπ

α
rk/α cos

k(θ − π)

α
+ c2 r2(ln r cos 2θ − θ sin 2θ)

+ r1+1/α

(
c3

sin απ

sin (α−2)π
α

sin
(1 + α)θ − 2π

α

+ c4 sec

(
2π

α
− θ̄

)
cos

(
(1 + α)θ

α
− θ̄

))
, (2.14)

where θ̄ = arccot(cot(π/α)−csc2(π/α) tan(απ)/2), satisfies our requirements. Here,
the coefficients {c11, c12, c13, c2, c3, c4} are precisely those in Eq. (2.13). We now
apply Theorem 2.3 to the function ueD

2 , satisfying �ueD
2 = −�(χueD

1 ) in R
2\� and

ueD
2 = −(ui N + χ ũeD

1 ) on �. We deduce that, as z → 0,

ueD
2 (x) = 	(P̃2(z)+ R̃2(z)), (2.15)

where P̃2 is a polynomial in either {z, z̄, z1/(2−α), z̄1/(2−α)} or {z, z̄, z1/(2−α), z̄1/(2−α),
zq ln z, z̄q ln z̄} under the I/Q criterion given above, and |R̃2(z)| = o(z2−ε) for any
ε > 0.

From this discussion we determine that, in a neighborhood of the origin, ueD has
the form

ueD(x) = a0 + r1/(2−α)
(

a1 sin θ−2π
2−α + a2 cos θ−2π

2−α
)

+ a3 x1 + a4 x2 + o(r)

(2.16)

for 0 < α < 1, and

ueD(x) = a0 + a1 r1/α cos θ−π
α

+ a2 x1 + a3 x2 + o(r) (2.17)

for 1 < α < 2. Therefore, when 0 < α < 1,

∂ueD

∂ν
∼ − a1

2−α r1/(2−α)−1 as x → 0 along �1 or �2. (2.18)

When 1 < α < 2, we have

∂ueD

∂ν
∼ a1 sin(π/α)

α
r1/α−1 as x → 0 along �1 and (2.19)

∂ueD

∂ν
∼ −a1 sin(π/α)

α
r1/α−1 as x → 0 along �2. (2.20)

Relations (2.18)–(2.20) establish the leading behavior claimed for the solutions φ of
Eqs. (2.6) and (2.8) in (INA) and (INO). The o(1) behavior of the remainder is based
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on the fact that the linear terms in ui N and ueD differ only by sign near the origin due

to the Dirichlet boundary conditions, so the constant in φ = ∂ui N

∂ν
+ ∂ueD

∂ν
vanishes,

leaving an o(1) remainder.

Parametrization. In what follows we use parametrized versions of the integral equa-
tions (2.6) and (2.8). To do this we use a smooth parameterization x = x(t) of � with
x(0) = x(T ) = 0, and we assume x(t) traverses� in a counter-clockwise fashion with
strictly positive speed, |x ′(t)| ≥ s0 > 0. Then the integral equations for the interior
and exterior Neumann problems, Eqs. (2.6) and (2.8), are expressed, respectively, as

µ(t)

2
−

T∫

0

K (t, s)µ(s) ds = f (t),

T∫

0

µ(s)|x ′(s)| ds = 0, and (2.21)

µ(t)

2
+

T∫

0

K (t, s)µ(s) ds = f (t),

T∫

0

µ(s)|x ′(s)| ds = 0, (2.22)

where

K (t, s) = (x(t)− x(s)) · n(t)

2π |x(t)− x(s)|2 |x ′(s)|, n(t) = ν(x(t))

f (t) = g(x(t)), µ(t) = φ(x(t)).
(2.23)

We note that for s = t we have K (t, t) = −x ′′(t) ·n(t)/(4π |x ′(t)|); as is well-known,
the kernel K is of class C∞ for s, t ∈ (0, T ). For x of class Cm+2[0, T ] (a case that
can be treated with no difficulty by the algorithm introduced in this paper), then K is
of class Cm for s, t ∈ (0, T ). For definiteness, however, we assume throughout that
both x and the Neumann data f are smooth: x ∈ (C∞[0, T ])2 and f ∈ C∞[0, T ].

3 Stable evaluation of cancellations

We describe our numerical method for the interior problem (2.21); the corresponding
exterior problem (2.22) can be treated similarly.

3.1 Cancellation of infinities and leading solution asymptotics

The essence of our method resides in use of the asymptotics (INA) and (INO) (or (ENA)
and (ENO) for the exterior problems) to resolve the difficulties detailed in Sect. 5,
namely indeterminate limits and subtractive cancellation, as well as inaccurate
Nyström integration. In this section, we provide a method that successfully tackles
the first of these difficulties.

Remark 3.1 Note that cancellation of infinities does indeed occur in Eqs. (2.21)–
(2.22) since, generically, µ tends to infinity at the corner and the right-hand side of
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these equations is finite. A numerical example demonstrating the need for a special
numerical treatment of this problem is provided in Table (2): high accuracy may not
be expected in general unless this issue is satisfactorily addressed.

To resolve the indeterminate limit mentioned above we first re-express the integral
equation solutions to explicitly account for the asymptotics (INA) and (INO): we write

µ(t) = aµ1(t)+ µ2(t), µ1(t) = ψ(t)|x(t)|−q , q =
{

1 − 1
2−α , 0 < α < 1

1 − 1
α
, 1 < α < 2

,

(3.1)
where ψ is a smooth real-valued function for 0 ≤ t ≤ T satisfying, for certain
appropriately selected values R and S, 0 < R < S < T ,

ψ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 for t ∈ [0, R] ∪ [S, T ] when 0 < α < 1, and

[−1 for t ∈ [0, R]
1 for t ∈ [S, T ] when 1 < α < 2,

and where µ2 is a Hölder continuous function [49] that vanishes at t = 0 and t = T .
The unknowns in our problem thus become the parameter a ∈ R and the function µ2.
In our implementation we use ψ ≡ 1 when 0 < α < 1, and

ψ(t) = 2
e−1/(t−R)

e−1/(t−R) + e−1/(S−t)
− 1 for t ∈ (R, S) (3.2)

when 1 < α < 2. The interior Neumann problem (2.21) can now be expressed as

µ2(t)

2
−

T∫

0

K (t, s)µ2(s) ds+a f1(t) = f (t),

T∫

0

|x ′(s)|µ2(s) ds+az1 = 0, (3.3)

where

f1(t) = µ1(t)

2
−

T∫

0

K (t, s)µ1(s) ds and z1 =
T∫

0

|x ′(s)|µ1(s) ds. (3.4)

Remark 3.2 The infinity cancellation mentioned in Remark 3.1 is encapsulated in the
function f1 in (3.4)—since the functionµ2 is Hölder continuous and vanishes at t = 0
and t = T , and, thus, all other terms in Eq. (3.3) are bounded for t ∈ [0, T ]. It follows,
in particular, that the function f1(t) is itself bounded for t ∈ [0, T ].

3.2 Stable evaluation of indeterminate limits: a canonical problem

The difficulties arising from cancellations of infinities can be addressed by resolving
analytically the indeterminate limits limt→0 f1(t) and limt→T f1(t). To do this, we
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first introduce approximations L1 and L2 of the kernel K around the endpoints 0
and T ,

L1(t, s) = (t x ′(0)− (s − T )x ′(T )) · n(0) |x ′(T )|
2π |t x ′(0)− (s − T )x ′(T )|2 = sin(απ) |(s−T )x ′(T )| |x ′(T )|

2π |t x ′(0)− (s − T )x ′(T )|2
(3.5)

L2(t, s) = ((t − T )x ′(T )− sx ′(0)) · n(T ) |x ′(0)|
2π |(t − T )x ′(T )− sx ′(0)|2 = sin(απ) |sx ′(0)| |x ′(0)|

2π |(t − T )x ′(T )− sx ′(0)|2 .
(3.6)

and the associated quantities

σ1(t) = ψ(0)
|t x ′(0)|−q

2
−

T∫

S

L1(t, s)|(s − T )x ′(T )|−q ds (3.7)

σ2(t) = |(t − T )x ′(T )|−q

2
− ψ(0)

R∫

0

L2(t, s)|sx ′(0)|−q ds. (3.8)

Remark 3.3 If �1 and �2 are straight segments parametrized by linear functions with
speeds x ′(0) and x ′(T ), then L1(t, s) = K (t, s) for t near 0 and s near T , and
L2(t, s) = K (t, s) for t near T and s near 0. The quantities σ1 and σ2, which them-
selves give rise to cancellation of infinities as t → 0 and t → T , capture the essence
of the cancellations inherent in the quantity f1(t).

The key to our algorithm lies in recognizing that σ1 and σ2 can be evaluated as rapidly
converging series expansions, thereby providing, via the simple additional manipula-
tions described in Sect. 3.2.2, an efficient and numerically stable means for evaluation
of the quantity f1(t) in and around t = 0 and t = T .

3.2.1 Series expansions for σ1 and σ2

Introducing the notations

V1 = (T − S)|x ′(T )| V2 = R|x ′(0)|

B1(t) = t |x ′(0)|
V1

B2(t) = (T − t) |x ′(T )|
V2

together with the parameters 0 < Ŝ < R̂ < T , which are selected in such a way
that B1(t) ≤ 1 for t ≤ Ŝ, and B2(t) ≤ 1 for t ≥ R̂, we have the following series
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expansions for the functions σ1 and σ2:

σ1(t) = ψ(0)
V −q

1

2π

∞∑
k=1

sin(kαπ)

k + q − 1
[B1(t)]k−1 for t ∈ (0, Ŝ] (3.9)

σ2(t) = V −q
2

2π

∞∑
k=1

sin(kαπ)

k + q − 1
[B2(t)]k−1 for t ∈ [R̂, T ). (3.10)

In particular, σ1 and σ2 are analytic functions on their domains of definition. We can,
in fact, establish a somewhat more general result for the related functions

σ±
1 (t, λ) = |t x ′(0)|λ

2
±

T∫

S

L1(t, s)|(s − T )x ′(T )|λ ds,

σ±
2 (t, λ) = |(t − T )x ′(T )|λ

2
±

R∫

0

L2(t, s)|sx ′(0)|λ ds.

Lemma 3.4 Let −1 < λ < 0 be given. For t ∈ (0, Ŝ], we have

σ±
1 (t, λ) =

(
1 ± sin(λπ − (1 + λ)απ)

sin(λπ)

) |t x ′(0)|λ
2

∓ V λ
1

2π

∞∑
k=1

sin(kαπ)

k − λ− 1
[B1(t)]k−1.

(3.11)

An analogous expansion holds for σ±
2 in the domain t ∈ [R̂, T ), namely

σ±
2 (t, λ) =

(
1 ± sin(λπ − (1 + λ)απ)

sin(λπ)

) |(T − t)x ′(T )|λ
2

∓ V λ
2

2π

∞∑
k=1

sin(kαπ)

k − λ− 1
[B2(t)]k−1. (3.12)

Proof The proof is given for σ±
1 . We have

σ±
1 (t, λ) = |t x ′(0)|λ

2π

⎛
⎜⎝π ±

[B1(t)]−1∫

0

sin(απ)v1+λ
1 − 2 cos(απ)v + v2 dv

⎞
⎟⎠

= |t x ′(0)|λ
2π

⎛
⎜⎝π ±

1∫

0

sin(απ)v1+λ
1 − 2 cos(απ)v + v2 dv ±

1∫

B1(t)

sin(απ)w−(1+λ)
1 − 2 cos(απ)w + w2 dw

⎞
⎟⎠

= |t x ′(0)|λ
2π

⎛
⎜⎝π ±

∞∑
k=1

1∫

0

sin(kαπ)vk+λ dv ±
∞∑

k=1

1∫

B1(t)

sin(kαπ)wk−λ−2 dw

⎞
⎟⎠
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= |t x ′(0)|λ
2π

⎛
⎝π ±

∞∑
k=1

2k sin(kαπ)

k2 − (λ+ 1)2

⎞
⎠ ∓ V λ1

2π

∞∑
k=1

sin(kαπ)

k − (λ+ 1)
[B1(t)]k−1

= |t x ′(0)|λ
2

(
1 ± sin(λπ − (1 + λ)απ)

sin(λπ)

)
∓ V λ1

2π

∞∑
k=1

sin(kαπ)

k − (λ+ 1)
[B1(t)]k−1.

The changes-of-variables, s = T − |t x ′(0)|
|x ′(T )| v and v = w−1 yield the first two iden-

tities; the conversion of the integrands to series follows by expansion of the cor-
responding integrands. The proof is completed by noting that the Fourier series of
π sin(λπ − (1 + λ)θ) csc(λπ) is a sine series with coefficients 2k/(k2 − (λ+ 1)2).

Remark 3.5 In light of the facts that, σ1(t) = σ−
1 (t,−q) and σ2(t) = σ−

2 (t,−q) for
0 < α < 1, while σ1(t) = −σ+

1 (t,−q) and σ2(t) = σ+
2 (t,−q), for 1 < α < 2,

the relations (3.9) and (3.10) follow directly from the previous lemma—since, for
λ = −q [with q given by Eq. (3.1)], the coefficient of |t x ′(0)|λ in Eq. (3.11) vanishes.
Furthermore, −q is the only value of λ ∈ (−1, 0) for which this coefficient vanishes.

3.2.2 Resolution of the infinity cancellations in f1(t)

When t ∈ (Ŝ, R̂)—sufficiently far from both 0 and T —no special treatment is needed
to evaluate f1(t) accurately, and we do so by direct integration and subtraction as indi-
cated in Eq. (3.4). For t ∈ [0, Ŝ] ∪ [R̂, T ], our method for stable evaluation of f1(t)
involves the computation of σ1(t) or σ2(t) via series expansions, and the evaluation
of certain singular integrals (that, as detailed in Sect. 4, are treated with high-order
accuracy by previously existing methods and generalizations thereof presented in
Appendix A) together with some simple algebraic manipulations. To evaluate f1(t)
we thus define

E1(t, s) = L1(t, s)|x ′(T )|−q − K (t, s)

∣∣∣∣ x(s)

s − T

∣∣∣∣
−q

(3.13)

η1(t) = ψ(0)
|x(t)|−q − |t x ′(0)|−q

2
= ψ(0)

(∣∣∣∣ x(t)

t

∣∣∣∣
−q

− |x ′(0)|−q

)
t−q

2

(3.14)

E2(t, s) = ψ(0)

(
L2(t, s)|x ′(0)|−q − K (t, s)

∣∣∣∣ x(s)

s

∣∣∣∣
−q

)
and (3.15)

η2(t) = |x(t)|−q − |(t − T )x ′(T )|−q

2
=

(∣∣∣∣ x(t)

t − T

∣∣∣∣
−q

− |x ′(T )|−q

)
(T − t)−q

2

(3.16)
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and we employ two different expressions for f1(t) near the corner, namely

f1(t) = η1(t)+ σ1(t)−
S∫

0

K (t, s)µ1(s) ds +
T∫

S

E1(t, s)(T − s)−q ds, (3.17)

and

f1(t) = η2(t)+ σ2(t)−
T∫

R

K (t, s)µ1(s) ds +
R∫

0

E2(t, s)s−q ds; (3.18)

the first expression is used for t ∈ [0, Ŝ] while the second is used for t ∈ [R̂, T ].
To verify that these expressions adequately resolve the indeterminate limits inherent

in Eq. (3.4) (and hence Eq. (2.21)), we show that each of the components in Eqs. (3.17)
and (3.18) are bounded as t → 0 and t → T , respectively. We restrict our discussion
to Eq. (3.17); the considerations concerning Eq. (3.18) are analogous. To show that
the various terms in Eq. (3.17) are bounded as t → 0, we first recall the results of
Sect. 3.2.1, from which it follows directly that σ1(t) is bounded. Further, it is easy
to check from Eq. (3.14) that η1(t) is bounded on [0, Ŝ]; the integral with the kernel
K (t, s) in Eq. (3.17), in turn, is clearly bounded since K is continuous for t, s ∈ [0, Ŝ].
Since, as pointed out in Remark 3.2, the function f1(t) itself is bounded for t ∈ [0, T ],
it follows that the integral with kernel E1(t, s) must be bounded as well: as claimed,
each one of the individual terms in Eq. (3.17) are bounded as t → 0.

The quantities η1(t), η2(t) can be computed directly using the expressions (3.14)
and (3.16) for t sufficiently far from 0 and T . In order to avoid cancellation errors,
in turn, for t close to 0 in our algorithm for evaluation of η1(t) we use a few terms
of the Taylor expansion of the quantity in parenthesis on the right-hand expression of
Eq. (3.14); similarly, a Taylor expansion is used to evaluate η2(t) for t close to T . In
Appendix A we describe our treatment of the cancellation in the kernels E1 and E2,
which is also based on use of Taylor series expansions.

4 Numerical implementation

Having re-expressed the integral equation (2.21) in the form (Eq. 3.3), and having
obtained expressions that resolve the cancellations inherent in the function f1, we are
now ready to describe our overall discretization and solution process for Eq. (2.21).
Recall that the unknown density is given by µ(t) = aµ1(t)+µ2(t), where the known
leading singularity is encapsulated inµ1(t), and the unknowns are the coefficient a and
the Hölder function µ2(t). As the action of the integral operators can be treated with
high-order accuracy by means of previously existing quadrature rules for functions
which, likeµ2(t), are Hölder continuous and vanish at t = 0 and t = T (cf. [2,22,36]),
the key to our approach lies in using efficient high-order methods for evaluation of
f1(t) = µ1(t)/2−∫ T

0 K (t, s)µ1(s) ds for all t ∈ [0, T ], and z1 = ∫ T
0 |x ′(s)|µ1(s) ds.
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We first describe the overall Nyström method, and then return to the computation of
f1(t) and z1.

4.1 The Nyström linear system

For integration of uniformly integrable functions, our implementation uses the quad-
rature rule introduced in [36], which, for completeness, is described in Appendix A.
Denoting the corresponding quadrature points and weights by tk ∈ (0, T ) and wk ,
1 ≤ k ≤ M , respectively, our linear system is given by

f̃1(0) ã + µ̃0

2
−

M∑
j=1

K (0, t j )w j µ̃ j = f (0) (4.1)

f̃1(ti ) ã + µ̃i

2
−

M∑
j=1

K (ti , t j )w j µ̃ j = f (ti ), 1 ≤ i ≤ M (4.2)

f̃1(T ) ã + µ̃T

2
−

M∑
j=1

K (T, t j )w j µ̃ j = f (T ) (4.3)

z̃1 ã +
M∑

j=1

|x ′(t j )|w j µ̃ j = 0 (4.4)

µ̃0 = µ̃T = 0, (4.5)

where f̃1(t) and z̃1 are approximations (whose evaluation is described below) of f1(t)
and z1, and where ã, µ̃k , µ̃0 and µ̃T are (unknown) numerical approximations of a,
µ2(tk), µ2(0) = 0, and µ2(T ) = 0, respectively.

Clearly, this system contains M + 5 equations and M + 3 unknowns: it is slightly
overdetermined. Our experience has shown that this over-determined system is signif-
icantly better conditioned than the square system obtained from Eqs. (4.2) and (4.4)
by removing µ̃0 and µ̃T . Further, we have noticed that, for mild angles, no significant
improvements arise from use of the additional equations (4.5); in such cases we do
eliminate µ̃0, µ̃t before solving the system (which still is overdetermined). For sharp
angles, in contrast, we do not eliminate these equations, as our experiments have shown
that incorporating Eq. (4.5) improves performance. In either case, we solve the over-
determined system in the least-squares sense, by means of the well known QR-based
least square solver. We note that, if desired, iterative least square solvers [6] could be
used in conjunction with accelerated formulations of our algorithm.

4.2 Evaluation of f1(t) and z1

To evaluate integrals with integrands given by “a smooth function multiplied by a
singular function known in closed form”—namely z1 and the integral that is part
of f1(t) for t ∈ (Ŝ, R̂)—we use quadratures that exploit the special form of the
integrand. Although specialized Gaussian quadratures could be used for this purpose,
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we prefer the flexibility of Clenshaw–Curtis-type quadratures, which we describe in
Appendix A.2. To complete the evaluation of f1 we need to provide an algorithm for
values of t close to 0 and T ; we do this, naturally, by exploiting the expressions (3.17)
and (3.18). We summarize the elements in the computation of f1(t) for t ∈ [0, Ŝ];
analogous procedures are used for t ∈ [R̂, T ]. For a given t ∈ (0, Ŝ], our algorithm
consists of the following steps:

1. Evaluate σ1(t) by adding the first few terms of the series (Eq. 3.9). In practice, we
choose Ŝ so that B1(t) ≤ 1/2 for t ∈ [0, Ŝ]. This choice, though not necessary,
guarantees rapid convergence of the series: use of twenty terms of the expan-
sion is more than sufficient for all the experiments reported in this paper. In all
experiments we have chosen R = T − S = 0.1 and Ŝ = T − R̂ = 0.05; see
Sect. 3.2.1.

2. Evaluate η1(t) either as a product of t−q/2 and a truncated Taylor series of the
term in parenthesis on the right-hand-side of Eq. (3.14) if t is sufficiently close to
0, or by direct subtraction otherwise.

3. Evaluate
∫ S

0 K (t, s)ψ(s)|x(s)|−q ds = ∫ R
0 K (t, s)ψ(s)|x(s)|−q ds + ∫ S

R K (t, s)
ψ(s)|x(s)|−q ds. The first integral in the sum can be treated by a special one-sided
Clenshaw–Curtis type quadrature described in Appendix A.2. In our experiments,
we use between 31 points (for mild angles) and 255 points (for sharp angles). The
second of these integrals can be efficiently and accurately approximated using
classical Clenshaw–Curtis quadrature [46], with numbers of quadrature points
varying between M and 2M , for mild and sharp angles, respectively.

4. Evaluate
∫ T

S E1(t, s)(T − s)−q ds using a graded-mesh quadrature as described
in Appendix A.1 using a number of quadrature points ranging between M/2
(for mild angles) and 2M (for sharp angles). We remark that, as t approaches 0,
E1(t, s) generally builds up a (bounded) boundary-layer, as a function of s, near
s =T —thus our selection of graded-mesh quadrature in this case, while Clenshaw–
Curtis quadrature is perfectly adequate for E1(0, s).

5. Combine the results of steps 1–4 as indicated in Eq. (3.17).

For t = 0, our algorithm consists of the following steps:

1. Evaluate σ1(0) = V −q
1 sin απ

2πq , the constant term of the series.
2. Evaluate η1(0) = 0.
3. Evaluate

∫ S
0 K (0, s)ψ(s)|x(s)|−q ds as described above for

∫ S
0 K (t, s)ψ(s)

|x(s)|−q ds.
4. Evaluate

∫ T
S E1(0, s)(T −s)−q ds using a one-sided Clenshaw-Curtis type quadra-

ture, using the same number of quadrature points as used above for
∫ R

0 K (t, s)ψ(s)
|x(s)|−q ds.

5. Combine the results of steps 1–4 as indicated in Eq. (3.17).

5 Need of special treatment of the leading singularity

Earlier in this text we indicated that the unbounded integral-equation solutions associ-
ated with the problems under consideration give rise to two main difficulties, namely,
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Table 1 The integral I (t1) and
approximate integral I(t1) at the
target point t1 for the teardrop
problem

As the mesh is refined, t1
approaches 0. The poor
performance I(t1) as an
approximation of I (t1) shows
that the quadrature
(Eqs. A.1–A.4) cannot resolve
the integral operator having
K (t, s) as its kernel for
unbounded functions µ with
singularities of the
form [Eq. (3.1)]

p M t1 I (t1) I(t1)

4 63 6.2 × 10−6 2.4 × 101 2.8 × 101

4 127 3.8 × 10−7 6.1 × 101 7.1 × 101

4 255 2.4 × 10−8 1.6 × 102 1.8 × 102

4 511 1.5 × 10−9 3.9 × 102 4.6 × 102

6 63 1.6 × 10−8 1.8 × 102 2.4 × 102

6 127 2.4 × 10−10 7.2 × 102 9.7 × 102

6 255 3.7 × 10−12 2.9 × 103 3.9 × 103

6 511 5.7 × 10−14 1.2 × 104 1.6 × 104

8 63 3.7 × 10−11 1.3 × 103 2.1 × 103

8 127 1.4 × 10−13 8.6 × 103 1.3 × 104

8 255 5.3 × 10−16 5.5 × 104 8.5 × 104

8 511 2.1 × 10−18 3.5 × 105 5.4 × 105

10 63 8.6 × 10−14 1.0 × 104 1.8 × 104

10 127 8.0 × 10−17 1.0 × 105 1.9 × 105

10 255 7.6 × 10−20 1.1 × 106 1.9 × 106

10 511 7.3 × 10−23 1.1 × 107 1.9 × 107

occurrence of subtractive cancellations and reduced order of accuracy caused by the
presence of unbounded integral-equation solutions. In this section we demonstrate,
by means of a few simple examples, the extent to which these difficulties can affect
numerical solutions unless a special treatment of the corner singularities such as that
described in the previous sections is used. In detail, we demonstrate

1. The poor accuracy that results from use of graded-mesh Nyström integrators,
unless recourse is made to some special interpolatory device [40] and signifi-
cantly refined integration meshes; as well as,

2. The accuracy loss that occurs for t close to 0 and T unless the indeterminate
limits that arise in the integral equations (2.21)–(2.22) as t → 0 and t → T are
adequately resolved.

Difficulty 1: Non-uniform integrability of the function K (t, s). It is easy to verify
by direct computation that

∫ T
0 K (t, s) ds is unbounded as t approaches 0 or T , and

the rate of blow-up is worsened for integrands K (t, s)µ(s) where µ(s) is unbounded
near 0 and/or T . Graded-mesh quadratures such as those described in [2,22,36] pro-
vide very efficient integrators for integrands of the form K (t, s)w(s) where w is the
Hölder-continuous function that vanishes at the corner; such functions arises in integral
methods for solutions of the Dirichlet problem provided adequate integral-equation
formulations are used. As shown in Table 1, however, such quadratures are not suf-
ficient by themselves to handle unbounded functions of the type we encounter in the
Nyström formulation of the Neumann problem. In detail, since the quadrature points
and target points in the Nyström method coincide, the integrator must, in particular,
approximate accurately the integral
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Fig. 2 Plots (in s) of the kernel K (t, s) associated with the teardrop domain, having α = 1/2, for
t = 10−4, 10−6, 10−8. Note the scales on the axes for the kernel plots

I (t1) ≡
T∫

0

K (t1, s)|x(s)|−q ?≈ I(t1) ≡
M∑

k=1

K (t1, t j )|x(t j )|−qw j

at the mesh point t1 that is closest to zero using the graded-mesh quadrature under
consideration, which, in our case is defined by (A.1)–(A.4) with M points and power p.

To illustrate this difficulty we use a teardrop domain of the type depicted in Fig. 3
with α = 1/2, q = 1/3. The kernel K shown Eq. (2.23) is depicted in Fig. 2 for
various target points t near 0; these images display the general “diverging boundary-
layer” behavior of the kernel around the corner. In Table 1, we present the target point
t1 nearest 0, the exact value of the integral I (t1), and the approximation I(t1), for
various values of M and p. We see that the quadrature significantly over-estimates the
integral—never producing more than a single digit of accuracy!

Difficulty 2: Non-trivial subtractive cancellation at the corner. Even if the integral
K (t1, s)|x(s)|−q were computed accurately, a significant loss of accuracy may occur
in the computation of the difference f1(t1) = 0.5|x(t)|−q − ∫ T

0 K (t1, s)|x(s)|−q ds
due to subtractive cancellation—recall Remark 3.1. In Table 2, we demonstrate this
issue by again considering the teardrop domain with α = 1/100, q = 99/199. We
report two relative errors:

ε1( f1(t1)) =
∣∣∣∣∣

f1(t1)− f̃1(t1)

f1(t1)

∣∣∣∣∣ and ε2( f1(t1)) =
∣∣∣∣ f1(t1)− f̄1(t1)

f1(t1)

∣∣∣∣ .

Here, f̃1(t1) is the value which we compute using the approach described in Eq. (3.17),
and f̄1(t1) is the value that results from direct subtraction of 16-digit-accurate values
of 0.5|x(t1)|−q and

∫ T
0 K (t1, s)|x(s)|−q ds. We see that our method of computing the

difference, f̃ (t1) ≈ f (t1), is very accurate and does not deteriorate as M and p are
increased. The accuracy of the “direct-subtraction” method f̄ (t1) ≈ f (t1) deteriorates
for fine discretizations as a result of massive subtractive cancellation.

6 Numerical results

In this section we demonstrate the performance of our algorithms for a variety of acute
and obtuse interior angles απ , including both mild and very sharp corner problems.
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Table 2 Subtractive
cancellation for the teardrop
problem with α = 1/100:
relative errors in the
approximation of f1(t1) via our
approach (3.17) (denoted by
f̃1(t1)), and the direct approach
(denoted by f̄1(t1)), based on
taking the difference in double
precision of |x(t1)|−q/2 and
I (t1)—assuming that such
16-digit accurate values have
been obtained

The loss of significance in f̄1(t1)
due to subtractive cancellation
becomes increasingly apparent
as p and M increase

p M t1 ε1( f1(t1)) ε2( f1(t1))

4 511 1.5 × 10−9 6.6 × 10−11 8.6 × 10−10

4 1023 9.2 × 10−11 4.2 × 10−12 1.0 × 10−10

4 2047 5.7 × 10−12 2.8 × 10−13 2.2 × 10−9

4 4095 3.6 × 10−13 4.7 × 10−14 1.0 × 10−8

6 511 5.7 × 10−14 4.9 × 10−10 1.0 × 10−7

6 1023 8.8 × 10−16 3.0 × 10−11 1.7 × 10−7

6 2047 1.4 × 10−17 1.9 × 10−12 7.4 × 10−6

6 4095 2.1 × 10−19 1.9 × 10−13 9.3 × 10−6

8 511 2.1 × 10−18 3.3 × 10−13 7.4 × 10−6

8 1023 8.0 × 10−21 7.4 × 10−14 2.6 × 10−5

8 2047 3.1 × 10−23 5.4 × 10−14 1.4 × 10−3

8 4095 1.2 × 10−25 4.8 × 10−14 3.9 × 10−2

10 511 7.3 × 10−23 3.2 × 10−13 3.8 × 10−4

10 1023 7.0 × 10−26 8.6 × 10−14 3.9 × 10−2

10 2047 6.9 × 10−29 5.9 × 10−14 1.2 × 100

10 4095 6.7 × 10−32 5.8 × 10−14 1.0 × 100

Table 3 Data for the teardrop problem, α = 1/2, q = 1/3. Here, x̄ = (1, 0) and x̂ = (0.1, 0)

p N ε(a) ε(ūe) ε(ui N (x̄)) ε(ui N (x̂)) cond(A)

4 16 2.6 × 10−5 2.2 × 10−6 2.5 × 10−5 3.7 × 10−8 1.6 × 101

4 32 1.6 × 10−7 3.6 × 10−8 1.6 × 10−8 3.5 × 10−8 1.6 × 101

4 64 7.1 × 10−9 1.5 × 10−11 2.5 × 10−11 5.9 × 10−11 1.6 × 101

4 128 7.3 × 10−11 1.0 × 10−11 1.9 × 10−11 3.0 × 10−12 1.7 × 101

6 16 6.3 × 10−6 1.4 × 10−5 1.3 × 10−5 2.0 × 10−6 1.6 × 101

6 32 2.1 × 10−7 1.1 × 10−7 6.5 × 10−8 8.4 × 10−8 1.6 × 101

6 64 1.5 × 10−9 1.4 × 10−11 4.9 × 10−12 2.6 × 10−10 1.6 × 101

6 128 2.3 × 10−11 5.9 × 10−12 5.9 × 10−12 1.7 × 10−12 1.7 × 101

8 16 8.1 × 10−5 3.8 × 10−5 1.4 × 10−7 1.6 × 10−6 1.6 × 101

8 32 4.7 × 10−7 1.8 × 10−7 5.3 × 10−9 3.0 × 10−8 1.6 × 101

8 64 1.1 × 10−9 4.9 × 10−12 1.1 × 10−12 4.2 × 10−10 1.6 × 101

8 128 7.7 × 10−11 8.0 × 10−12 9.9 × 10−13 1.7 × 10−13 1.7 × 101

We have a ≈ 0.1904128401 and ūe ≈ −1.57770198749

In Tables 1, 2, 3, 4, 5 and 6, we present algorithm parameters and resulting errors,
including

• The power p in the graded-mesh quadrature (A.1)–(A.4) change-of-variables and
the total number N of unknowns used in the discretization. For comparison with
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Table 4 Data for the teardrop problem α = 1/100, q = 99/199

ui N (x) = ln |x − z̄| f (t) = (T − 3( t
T )

2)/|x ′(t)|
p N ε(a) ε(ūe) ε(ui N (x̄)) p N ε(a) ε(ūe)

6 512 5.4 × 10−2 9.5 × 10−4 6.4 × 10−3 6 512 1.3 × 10−1 8.7 × 10−3

6 1024 2.0 × 10−1 4.9 × 10−3 4.6 × 10−3 6 1024 6.2 × 10−1 1.5 × 10−1

6 2048 2.3 × 10−4 5.8 × 10−6 5.4 × 10−6 6 2048 6.7 × 10−4 1.6 × 10−4

6 4096 5.3 × 10−6 5.0 × 10−7 7.6 × 10−9 6 4096 2.2 × 10−5 5.3 × 10−6

8 512 8.1 × 10−1 6.7 × 10−2 6.8 × 10−3 8 512 1.1 × 10−0 8.1 × 10−1

8 1024 2.9 × 10−2 7.3 × 10−4 4.1 × 10−4 8 1024 4.8 × 10−2 1.7 × 10−2

8 2048 2.8 × 10−4 5.1 × 10−6 6.3 × 10−6 8 2048 8.3 × 10−4 1.4 × 10−4

8 4096 2.1 × 10−6 1.9 × 10−7 2.8 × 10−9 8 4096 4.2 × 10−6 2.0 × 10−6

10 512 1.7 × 10−1 1.9 × 10−2 5.6 × 10−3 10 512 2.8 × 10−2 1.3 × 10−1

10 1024 9.9 × 10−3 5.4 × 10−4 3.4 × 10−4 10 1024 3.0 × 10−2 1.6 × 10−2

10 2048 3.1 × 10−4 1.1 × 10−5 3.6 × 10−6 10 2048 8.9 × 10−4 2.9 × 10−4

10 4096 9.3 × 10−7 1.2 × 10−8 7.0 × 10−10 10 4096 2.8 × 10−6 3.1 × 10−7

Here, x̄ = (0.1, 0). In the first case, a ≈ 0.1310937 and ūe ≈ −1.5982659. In the second case, a ≈
−18.92685 and ūe ≈ −24.206462

Table 5 Data for the boomerang-shaped domain, α = 3/2, q = 1/3

ui N (x) = ln |x − z̄| ui N (x) = αr1/α sin(θ/α)

p N |a| ε(ui N (x̄)) p N ε(a) ε(ui N (x̄))

6 32 5.6 × 10−17 5.7 × 10−8 6 32 6.4 × 10−5 5.4 × 10−5

6 64 5.5 × 10−18 4.7 × 10−11 6 64 3.6 × 10−7 2.4 × 10−7

6 128 1.4 × 10−17 5.0 × 10−15 6 128 4.2 × 10−10 4.4 × 10−10

6 256 6.8 × 10−17 1.3 × 10−16 6 256 4.2 × 10−11 2.9 × 10−12

Here x̄ = (0.1, 0.1). In the former case, a = 0, and in the latter, a = √
3

Table 6 Data for the heart-shaped domain, α = 199/100, q = 99/199

ui N (x) = ln |x − z̄| f (t) = (T − 3( t
T )

2)/|x ′(t)|
p N |a| ε(ui N (x̄)) p N ε(a) ε(ūe)

6 32 2.6 × 10−9 4.3 × 10−7 8 512 7.4 × 10−1 7.4 × 10−1

6 64 2.1 × 10−9 7.4 × 10−9 8 1024 4.1 × 10−2 4.1 × 10−2

6 128 1.9 × 10−12 2.7 × 10−11 8 2048 1.9 × 10−2 1.9 × 10−2

6 256 3.2 × 10−16 1.0 × 10−14 8 4096 1.1 × 10−4 1.1 × 10−4

Here x̄ = (0.1, 0.1). In the former case, a = 0. In the latter case, a ≈ −88.896 and ūe ≈ −178.076
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Fig. 3 The teardrop domain (left) with α = 1/2, the boomerang-shaped domain with α = 3/2, and the
heart-shaped domain with α = 199/100

the results in [36] for Dirichlet problems, note that the n reported in the tables
given there corresponds to N/2 in our case.

• The relative error ε(a) = |(a − ã)/a| in our approximation ã ≈ a. When a is not
known explicitly (as is most often the case), we use our computed value for the
largest reported p and twice our largest reported N as the “exact” value. When
a = 0, we report |a| instead.

• The relative error ε(ūe) = |(ūe − ũe)/ūe| in our approximation ũe ≈ ūe. We use
our computed value for the largest reported p and twice our largest reported N as
the “exact” value.

• The relative error ε(ui N (x)) = |(ui N (x)− ũi N (x))/ui N (x)| in our approximation
ũi N (x) ≈ ui N (x) at one or two interior points, when the exact solution ui N (x)
is known. The approximate solution is computed by means of Eq. (2.5) using
appropriate quadratures and our numerical solutions a, ūe and µ2.

• An estimate cond(A) of the condition number of the system matrix. We only
provide this quantity in cases in which a reliable estimate of it could easily be
produced—which occurred for corners that are not too sharp.

Acute interior angles—teardrop domains. For acute interior angles, we concentrate
on a family of domains bounded by the curves

x(t) =
(

2 sin
t

2
, −β sin t

)
, β = tan

απ

2
, 0 < α < 1, 0 ≤ t ≤ 2π, (6.1)

see Fig. 3. We consider the mild case α = 1/2, and the extreme case α = 1/100 for
which the domain is essentially a needle.

For our first set of teardrop experiments, for α = 1/2, we choose boundary data
corresponding to the exact solution ui N (x) = ln |x − z̄|, with z̄ = (6, 0) ∈ R

2\�. The
data is reported in Table 3. The overall performance of the method is excellent, resulting
in at least 10-digit accuracies using a small number of discretization points—signifi-
cantly more accurate than any other previous solver for such mild corner problems.

Our next example demonstrates the performance of our approach on the rather
extreme case α = 1/100, for which the domain is essentially a needle. In Table 4
we present results for two α = 1/100 experiments: one for which the exact solu-
tion is known and equals ui N (x) = ln |x − z̄|, and the other one with Neumann
conditions given by the zero-average (

∫ T
0 f (t)|x ′(t)| dt = 0) function f (t) =

(T − 3( t
T )

2)/|x ′(t)|—for which the exact solution is not available. As expected, the
present α = 1/100-problem is much more challenging than the α = 1/2-problem
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considered previously; yet our method still produces up to 7 digits of accuracy in the
PDE solution and other observables. We conjecture that, by incorporating additional
terms in our special treatment of the asymptotic series, and perhaps modifying the
linear system adequately, it may be possible to achieve a performance similar to that
obtained for α = 1/2, even for extreme angles; this topic lies beyond the scope of the
present contribution, and is left for future work.
Obtuse interior angles—boomerang-shaped and heart-shaped domains. Here we
consider two families of domains: boomerang-shaped [36] and heart-shaped domains.
Letting β = tan απ

2 , we define the former domains as those bounded by the curves

x(t) =
(

−2

3
sin

3t

2
, β sin t

)
, 1 < α < 2, 0 ≤ t ≤ 2π; (6.2)

the heart-shaped domains, in turn, are those bounded by the curves

x(t) =
(

cos(1 + α)t − sin(1 + α)t
sin(1 + α)t cos(1 + α)t

) (
β

1

)
−

(
β

cos t

)
, 1 < α < 2, 0 ≤ t ≤ π.

(6.3)

Samples of boomerang-shaped and heart-shaped domains are presented in Fig. 3. The
reason for including the heart-shaped domain in addition to the previously consid-
ered [36] boomerang-shaped domains is that, for α near 2, the parameterization of
the boomerang-shaped domain has derivatives which vary widely, with speeds |x ′(t)|
that are very small at some points. This negatively affects the behavior of the ker-
nel, the conditioning of the system, and the performance of the algorithm. Rather
than reparameterize these curves, we opted to include the heart-shaped domains, for
which the corner angle is just as easy to control and which do not suffer from this
difficulty.

In Table 5, we present results for two problems involving the boomerang-shaped
domain, with α = 3/2, with respective Neumann boundary data corresponding to two
known solutions: ui N (x) = ln |x − z̄|, z̄ = (6, 0), and ui N (x) = αr1/α sin(θ/α); we
note that the Dirichlet version of the second problem is considered in [36]. The first
choice illustrates that the expected blow up of the integral-equation solution for obtuse
corner angles may not occur. Here we have a = 0, as is easy to check by specializing
the analysis of Sect. 2 to the present context: in this case ui N does not contain an
r1/α-type singularity near the origin (it is analytic in a neighborhood of the origin), so
the complementary ueD cannot inherit such a singularity through the boundary condi-
tions. Therefore, the leading singular exponent for ueD is 1/(2 − α)− 1 > 0, and the
density does not blow up near the corner. The second choice, ui N (x) = αr1/α sin(θ/α),
gives us an example in which we can compute the coefficient a analytically. Once
again, following the analysis of Sect. 2 we obtain ueD ∼ −α sec

(
π
α

)
r1/α sin

(
θ−π
α

)
as r → 0, and hence that φ ∼ ± tan

(
π
α

)
r1/α−1 as r → 0 along �. The “+”

and “−” signs corresponds to the limits as r → 0 along � in the lower and upper
half-planes, respectively. We therefore find that µ(t) = − tan

(
π
α

)
µ1(t) + µ2(t) =√

3µ1(t) + µ2(t). Our algorithm displays excellent performance for both problems
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considered in Table 5—in the second case this it true in spite of the fact that the
Neumann data is not even of class C1 on either �1 or �2. The condition numbers of
the associated matrices are quite mild: they range between about 10 and 25 for these
experiments.

In Table 6, we display results produced by our algorithm for the heart-shaped
domain with α = 199/100. This is a obtuse-angle counterpart of the α = 1/100 tear-
drop problem, and, as before, we use boundary data given by the normal derivative of
the function ui N (x) = ln |x − z̄|. The performance is once again very good indeed,
note that, as in a previous case, here we have a = 0. For the more generic Neumann
data f (t) = (T − 3( t

T )
2)/|x ′(t)| the problem is much more difficult, as it was for

the α = 1/100-teardrop; in this case our method produces four digits of accuracy.
Curiously, the relative errors for a and ūe reported in Table 6, though not identical, do
agree with each other to the precision shown. As suggested above in connection with
the case involving a sharp needle, here we conjecture that, by incorporating additional
terms in our special treatment of the asymptotic series, and perhaps modifying the
linear system adequately, it may be possible to achieve, in the sharp-angle case, a
performance similar to that obtained for mild angles.

Appendix A: Quadratures and kernel evaluation

In this appendix we collect details concerning the implementation of our algorithm.

A.1 Graded-mesh quadratures

We present a simple global quadrature rule for all the integrals involving the Hölder-
continuous function µ2, namely

T∫

0

K (t, s)µ2(s) ds,

T∫

0

µ2(s)|x ′(s)| ds and

T∫

0

µ2(s)|x ′(s)| ln|x(s)| ds.

The algorithm provided for the first of these integration problems should be uniformly
accurate regardless of the proximity of the target point t to t = 0 or t = T . The latter
two integration problems are related to the zero-mean condition

∫ T
0 µ(s)|x ′(s)| ds = 0

and the computation of the constant ūe , respectively—taking x0 = 0 for the com-
putation of ūe in Eq. (2.5). We briefly describe the approach introduced and analyzed
in [36].

To approximate integrals of the type I = ∫ b
a g(s) ds, we use the change-of-vari-

ables

v(x) = (b − a)
[c(x)]p

[c(x)]p + [1 − c(x)]p
+ a (A.1)
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for an integer p ≥ 2, where

c(x) =
(

1
2 − 1

p

) (
2x−b−a

b−a

)3 + 1
p

(
2x−b−a

b−a

)
+ 1

2 . (A.2)

The bijection v : [a, b] → [a, b] is analytic, and it has p − 1 vanishing derivatives at
a and b.

With this change-of-variables, we have

I =
b∫

a

g(t) dt =
b∫

a

g(v(s))v′(s) ds ≈
N∑

k=1

wk g(tk), (A.3)

where the approximate expression was obtained by using the trapezoid rule on the
integral including the change-of-variables, and where

xk = k(b − a)

N + 1
, tk = v(xk) and wk = b−a

N+1 v
′(xk), 1 ≤ k ≤ N . (A.4)

A.2 Clenshaw–Curtis quadratures

Here we describe efficient and accurate quadrature rules for integrals of the forms

S∫

0

K (t, s)ψ(s)|x(s)|−q ds for t ∈ [0, Ŝ],
T∫

0

ψ(s)|x(s)|−q |x ′(s)| ds, (A.5)

T∫

R

K (t, s)ψ(s)|x(s)|−q ds for t ∈ [R̂, T ],
T∫

0

ψ(s)|x(s)|−q |x ′(s)| ln|x(s)| ds.

(A.6)

The integrand in each of these integrals is given by the product of a smooth function
and a function that contains a known singularity at either one or both of its endpoints,
and is otherwise smooth. We derive appropriate Clenshaw–Curtis-type quadratures for
these problems: such quadrature rules have a practical advantage over their Gaussian
quadrature counterparts, since their quadrature points and weights are fairly simple and
inexpensive to compute, and yet they display outstanding performance [30,42,46,47].

A.2.1 One-sided power and logarithmic singularities

Without loss of generality, we can take the singularities to lie at the left endpoint.
Clearly, further, it suffices to produce quadrature rules for integrals of the forms
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I1 =
b∫

a

g(t)(t − a)−κ dt, I2 =
b∫

a

g(t)(t − a)−κ ln(t − a) dt,

where κ < 1 and g is a Hölder continuous on (a, b) with positive Hölder expo-
nent, since the integrals containing the kernel K (t, s) in Eqs. (A.5) and (A.6) can be
re-expressed in the form

S∫

0

K (t, s)ψ(s)

∣∣∣∣ x(s)

s

∣∣∣∣
−q

s−q ds and

T −R∫

0

K (t, T − u)ψ(T − u)

∣∣∣∣ x(T − u)

u

∣∣∣∣
−q

u−q ds.

Integrals of the I2-sort naturally arise in computations which, like those in Eq. (2.5),
involve the single-layer potential.

To obtain the desired quadrature rules we begin by transforming the integrals to the
forms

I1 = (b − a)1−κ2κ−1

1∫

−1

ĝ(x) (1 + x)−κ dx

I2 = (b − a)1−κ2κ−1

1∫

−1

ĝ(x) (1 + x)−κ
(

ln(b − a)+ ln

(
1 + x

2

))
dx

= ln(b − a)I1 + (b − a)1−κ2κ−1

1∫

−1

ĝ(x) (1 + x)−κ ln

(
1 + x

2

)
dx,

where ĝ(x) = g
( b−a

2 x + b+a
2

)
. We have thus reduced the problem to evaluating the

integrals

Î1 = 2κ−1

1∫

−1

ĝ(x) (1 + x)−κ dx and Î2 = 2κ−1

1∫

−1

ĝ(x) (1 + x)−κ ln

(
1 + x

2

)
dx,

where we have kept the factor 2κ−1 for convenience in later recurrence relations.
The Chebyshev series of ĝ(x) is

ĝ(x) =
∞∑′

n=0

cnTn(x) for cn = 2

π

1∫

−1

ĝ(x)Tn(x)√
1 − x2

dx = 2

π

π∫

0

ĝ(cos θ) cos nθ dθ,
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with the convention that the prime in the sum indicates that the 0th term is halved. We
obtain the series expansions

Î1 =
∞∑′

n=0

cnαn αn = 2κ−1

1∫

−1

Tn(x) (1 + x)−κ dx

Î2 =
∞∑′

n=0

cnβn βn = 2κ−1

1∫

−1

Tn(x) (1 + x)−κ ln

(
1 + x

2

)
dx

which, in our numerical method, we truncate to M + 1 terms. The coefficients cn are
computed, of course, using a Type-I Discrete Cosine Transform entailing aO(M log M)
cost. The coefficients αn and βn , in turn, are evaluated analytically in an efficient man-
ner by means of the recursive relations given in Lemma A.1 below. Thus, the quadrature
rules under consideration are defined by

Î1 ≈
M∑′

n=0

c̃nαn =
M∑′′

k=0

wαk g(tk) Î2 ≈
M∑′

n=0

c̃nβn =
M∑′′

k=0

w
β
k g(tk),

where the double prime on the sum indicates that both the 0th and Mth terms are
halved, tk = b−a

2 cos kπ
M + b+a

2 and

wαk =
M∑′

n=0

2αn

M
cos

nkπ

M
w
β
k =

M∑′

n=0

2βn

M
cos

nkπ

M
.

Consequently, all that remains is for us to devise an efficient means for evaluation
of the coefficients αn, βn . We do so via simple recurrence relations, and use two key
recurrences for Tn in the derivation:

1. T0(x) = 1, T1(x) = x , and Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1

2. 2Tn(x) = d

dx

(
Tn+1(x)

n + 1
− Tn−1(x)

n − 1

)
for n > 1

Direct computation yields that the first few values of αn and βn are:

α0 = 1

1 − κ
, α1 = 2

2 − κ
− 1

1 − κ
, α2 = 8

3 − κ
− 8

2 − κ
+ 1

1 − κ

β0 = − 1

(1 − κ)2
, β1 = − 2

(2 − κ)2
+ 1

(1 − κ)2
,

β2 = − 8

(3 − κ)2
+ 8

(2 − κ)2
− 1

(1 − κ)2
.

Using these values and the following lemma, all coefficients αn and βn can be
obtained.
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Lemma A.1 For n > 1 we have the recurrences

αn+1 = − n + 1

n − κ + 2

(
2

n2 − 1
+ 2αn + n + κ − 2

n − 1
αn−1

)

βn+1 = − n + 1

n − κ + 2

(
αn+1

n + 1
− αn−1

n − 1
+ 2βn + n + κ − 2

n − 1
βn−1

)
.

Proof For n > 1, we have

αn+1 = 2κ−1

1∫

−1

2Tn(x)(1 + x)1−κ dx − 2αn − αn−1

= 2κ−1

1∫

−1

d

dx

(
Tn+1(x)

n + 1
− Tn−1(x)

n − 1

)
(1 + x)1−κ dx − 2αn − αn−1

= − 2

n2−1
− 2αn − αn−1 − 2κ−1

1∫

−1

(
Tn+1(x)

n + 1
− Tn−1(x)

n−1

)
d

dx
(1+x)1−κ dx

= − 2

n2 − 1
− 2αn − αn−1 − 1 − κ

n + 1
αn+1 + 1 − κ

n − 1
αn−1

= − n + 1

n − κ + 2

(
2

n2 − 1
+ 2αn + n + κ − 2

n − 1
αn−1

)
.

The assumption n > 1 is needed for the second equality. The same kind of argument
yields the recurrence for βn+1.

A.2.2 Two-sided power and logarithmic singularities

In this subsection, we devise quadrature rules for integrals of the forms

I1 =
b∫

a

g(t)[(t − a)(b − t)]−κ dt and

(A.7)

I2 =
b∫

a

g(t)[(t − a)(b − t)]−κ ln[(t − a)(b − t)] dt,
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where κ < 1 and g is a Hölder-continuous on (a, b) with positive Hölder-exponent.
The integral

T∫

0

ψ(s)|x ′(s)|
∣∣∣∣ x(s)

s(s − T )

∣∣∣∣
−q

[s(T − s)]−q
(

ln

∣∣∣∣ x(s)

s(s − T )

∣∣∣∣ + ln(s(T − s))

)
ds,

arising in the computation of the single-layer integrals in (2.5), motivates our devel-
opment of quadrature rules for integrals of the types (A.7). As before, using changes
of variables we obtain

I1 = (b − a)1−2κ 22κ−1

1∫

−1

ĝ(x) (1 − x2)−κ dx

I2 = (b − a)1−2κ 22κ−1

1∫

−1

ĝ(x) (1 − x2)−κ
(

2 ln

(
b − a

2

)
+ ln(1 − x2)

)
dx

= 2 ln

(
b − a

2

)
I1 + (b − a)1−2κ 22κ−1

1∫

−1

ĝ(x) (1 − x2)−κ ln(1 − x2) dx .

The problem has thus been reduced to that of finding quadratures for

Î1 = 22κ−1

1∫

−1

ĝ(x) (1 − x2)−κ dx Î2 = 22κ−1

1∫

−1

ĝ(x) (1 − x2)−κ ln(1 − x2) dx,

which is further reduced to computing the quantities:

αn = 22κ−1

1∫

−1

Tn(x)(1 − x2)−κ dx βn = 22κ−1

1∫

−1

Tn(x)(1−x2)−κ ln(1−x2) dx .

It is clear from the parity of the integrands that αn = βn = 0 when n is odd. Quad-
rature rules for the integrals Î1, were the scope of investigation in [30], although the
approach therein is slightly different than the method that we present in what follows.

Direct calculations yield the initial values of αn and βn :

α0 = �2(1 − κ)

�(2 − 2κ)
β0 = �2(1 − κ)

�(2 − 2κ)
(ψ0(1 − κ)− ψ0(1.5 − κ)),

where �(x) is the gamma-function and ψ0(x) = �′(x)/�(x) is the digamma-func-
tion. In the special case κ = 0.5, the coefficients αn and βn can be seen to equal
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α0 = π , β0 = −2π ln 2 and αn = βn = 0 for n ≥ 1. The recurrences result from sim-
ilar arguments to those followed for the one-sided singularity problem; the resulting
recursions are presented in the following lemma.

Lemma A.2 For n ≥ 1 we have the recurrences

αn+1 = n + 2κ − 2

n − 2κ + 2
αn−1 βn+1 = n + 2κ − 2

n − 2κ + 2
βn−1 − 4n

(n − 2κ + 2)2
αn−1.

Or, expressed in terms of even and odd subscripts

α2n = 2n + 2κ − 3

2n − 2κ + 1
α2n−2 α2n−1 = 0,

β2n = 2n + 2κ − 3

2n − 2κ + 1
β2n−2 − 8n − 4

(2n − 2κ + 1)2
α2n−2 β2n−1 = 0.

A.3. Evaluation of K , E1 and E2

To achieve the accuracies reported in Sect. 6, it is necessary to use some care in the
evaluation of the integral kernels K , E1 and E2. In this subsection we discuss and
address the key issues in these regards.

Recalling that the kernel K (t, s) contains the difference x(t) − x(s) in both its
numerator and denominator, we seek to avoid unnecessary loss of significance in the
evaluation of K (t, s) due to subtractive cancellation in x(t) − x(s) when s is near
t—as is often the case in our solvers, owing to our use of graded meshes. We do this
by means of polynomial interpolation with equispaced knots taken from the set

{· · ·, t − 2δ, t − δ, t, t + δ, t + 2δ, · · · },

where the stepsize δ is appropriately small, but not so small that it gives rise subtrac-
tive cancellation. In our computations we use an odd number of knots which always
includes the point t , and we center the knots around t when possible—otherwise we
get as close as we can to having t be the central knot. We evaluate K (t, s) directly
when s is sufficiently far from t , and via the polynomial interpolant otherwise. Because
K (t, s) is smooth for s near t , this polynomial approximation is highly accurate.

This type of cancellation problem does not occur in connection with either of the
kernels E1 and E2, since these kernels arise in situations where s and t are far from each
other only, but describe points which are spatially close to each other, but on opposite
sides of the corner. In these cases, we opt for approximations which are constructed
on the basis of Taylor series expansions. Because the approaches we use to eliminate
cancellation errors for E1 and E2 are analogous, we only describe the one we use for
E1. Recalling that E1(t, s) = L1(t, s)|x ′(T )|−q − K (t, s)|x(s)/(s − T )|−q , we note
that, as the target point t approaches 0 and the integration point s approaches T , both
terms L1(t, s) and K (t, s) are unbounded, yet their difference is finite, so we must
again design an algorithm to avoid potentially substantial subtractive cancellation.
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To this end, we begin by decomposing E1 into three terms, E1(t, s) = E11(t, s)+
E12(t, s)+ E13(t, s) defined as

E11(t, s) = − x(t) · n(t)

2π |x(t)− x(s)|2 |x ′(s)|
∣∣∣∣ x(s)

s − T

∣∣∣∣
−q

E12(t, s) =
x(s) · n(t) |x ′(s)|

∣∣∣ x(s)
s−T

∣∣∣−q − (s − T )x ′(T ) · n(0) |x ′(T )|1−q

2π |t x ′(0)− (s − T )x ′(T )|2

E13(t, s) = |t x ′(0)− (s − T )x ′(T )|2 − |x(t)− x(s)|2
2π |x(t)− x(s)|2|t x ′(0)− (s−T )x ′(T )|2 x(s) · n(t) |x ′(s)|

∣∣∣∣ x(s)

s−T

∣∣∣∣
−q

.

In each of these terms, we must handle the subtractive cancellation in the numera-
tors of each fraction when t and s are near their respective endpoints; in the first of
these denominators the subtractive cancellation occurs in the inner product x(t) ·n(t).
We eliminate all of these subtractive cancellations, quite simply, by means of Taylor
approximations centered at t = 0 and/or s = T . In our implementation we truncate
the series at the point beyond which it would be necessary to evaluate more than three
derivatives of the position or normal vectors x, n at 0, T to continue the expansion.
Finally, we mention the special case,

E1(0, s) = 1

2π(s − T )

(
x(s)

s − T
· n(0) |x ′(s)|

∣∣∣∣ x(s)

s − T

∣∣∣∣
−(2+q)

− |x ′(T )|−q sin απ

)
,

which we evaluate directly when s is far enough from T , and otherwise via a Taylor
series expansion, as indicated above.
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