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Abstract. An approximate error function for the discretization error on a given mesh is obtained
by projecting (via the energy inner product) the functional residual onto the space of continuous,
piecewise quadratic functions which vanish on the vertices of the mesh. Conditions are given under
which one can expect this hierarchical basis error estimator to give efficient and reliable function
recovery, asymptotically exact gradient recovery, and convergent Hessian recovery in the square
norms. One does not find similar function recovery results in the literature. The analysis given
here is based on a certain superconvergence result which has been used elsewhere in the analysis of
gradient recovery methods. Numerical experiments are provided which demonstrate the effectivity
of the approximate error function in practice.
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1. Introduction. Hierarchical basis a posteriori error estimators were intro-
duced in the early 1980s [22], and a general framework for the analysis of their ef-
fectivity and computational cost has been given by Bank [5] and Bank and Smith
[1]. The basic idea behind such methods is that the base space of functions Vh, in
which we wish to find our finite element approximation uh, is augmented by a com-
plementary space Ṽh such that the composite space Vh ⊕ Ṽh provides an improved
finite element approximation ūh. In symbols, we show this as |||u− ūh||| ≤ β|||u− uh|||
for some β ∈ [0, 1), where ||| · ||| is the energy norm associated with the underlying
bilinear form. This improved approximation assumption is referred to as a saturation
assumption. An approximate error function εh ≈ u−uh is computed in the space Ṽh.
Using the saturation assumption and strengthened Cauchy inequalities between the
spaces Vh and Ṽh, effectivity estimates of the form

(1) c1 ≤ |||εh|||
|||u− uh|||

≤ c2

are proved.
In this paper a different sort of analysis, which yields stronger assertions, is given

for the case where Vh is the space of continuous, piecewise linear functions on a
given mesh and V̄h is the space of continuous, piecewise quadratic functions on that
same mesh. The augmenting space Ṽh consists of quadratic “bump” functions which
vanish on the vertices of the mesh. In particular, we show that the approximate error
function, εh ≈ u−uh, provides efficient and reliable function recovery, asymptotically
exact gradient recovery, and convergent Hessian recovery:

(2) c1 ≤ ||εh||0,Ω
||u− uh||0,Ω

≤ c2,
||εh||1,Ω

||u− uh||1,Ω
→ 1,

∑
τ∈Th

|εh|22,τ → |u|22,Ω.
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Our analysis is based on a superconvergence result of Bank and Xu [3, 4], which also
appears in a slightly more general form in [20]. This result was used in these papers
to explain the success of a number of popular gradient recovery methods, but we
use it here in the context of hierarchical basis error estimation to establish our key
approximation results (2).

The rest of this paper is organized as follows. In section 2 we lay out the basic
notation and assumptions for this paper. Section 3 contains a statement of the super-
convergence result of Bank and Xu, which we then use to prove the above mentioned
gradient and Hessian recovery results. In section 4 we prove the function recovery
result and show why we cannot generally hope for asymptotic exactness in this case.
Section 5 comprises almost half of the paper and consists of four examples, which are
used to verify the effectivity of our estimator in practice, and a brief subsection on
computational cost.

2. Notation and basic assumptions. Let Ω ⊂ R
2 be a bounded domain with

Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN , and define

(3) H ≡
{
v ∈ H1(Ω) : v|∂ΩD

= 0 in the trace sense
}
.

The usual spaces W k
p (Ω) and Hk(Ω) ≡ W k

2 (Ω) are equipped with their standard
norms || · ||k,p,Ω and || · ||k,Ω ≡ || · ||k,2,Ω, and seminorms | · |k,p,Ω and | · |k,Ω, respectively.
For simplicity in exposition, we will assume that ∂Ω is a polygon. Let data functions
a : Ω̄ → R

2×2, b : Ω̄ → R
2, c, f : Ω̄ → R, and g : ∂ΩN → R be given. The problem is

to find u ∈ H such that

B(u, v) = F (v) for all v ∈ H,(4)

B(u, v) ≡
∫

Ω

a∇u · ∇v + (b · ∇u + cu)v dx,(5)

F (v) ≡
∫

Ω

fv dx +

∫
∂ΩN

gv ds.(6)

We will assume that the data functions are sufficiently smooth, and that the matrix a
is positive definite, with the smallest eigenvalue bounded below on Ω by some constant
γ > 0. We make the following standard assumptions concerning the bilinear form B
and linear functional F : There exist constants α, ν, μ > 0, such that, for all v, w ∈ H,

|F (v)| ≤ α||v||1,Ω,
|B(v, w)| ≤ ν||v||1,Ω||w||1,Ω,

B(v, v) ≥ μ||v||21,Ω.

Let Th denote a shape-regular triangulation of Ω with mesh size h ∈ (0, 1). Let
Vh ⊂ H denote the space of continuous, piecewise-linear polynomials defined on Th,
and let V̄h ⊂ H denote the continuous, piecewise-quadratic polynomials. We will
think of V̄h hierarchically as

(7) V̄h = Vh ⊕ Ṽh,

where Ṽh is the space of quadratic “bump” functions, i.e., continuous piecewise-
quadratic polynomials which vanish at all of the vertices of the triangulation. In
what follows, uh ∈ Vh and ūh ∈ V̄h denote, respectively, the piecewise-linear and
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piecewise-quadratic approximate solutions of (4):

B(uh, v) = F (v) for all v ∈ Vh,(8)

B(ūh, v) = F (v) for all v ∈ V̄h.(9)

Let u� ∈ Vh and uq ∈ V̄h denote piecewise-linear and piecewise-quadratic interpolants
of u on Th. We make the following standard assumptions about their asymptotic
approximation quality:

||u− u�||k,Ω � h2−k||u||2,Ω,(10)

||u− uq||k,Ω � h3−k||u||3,Ω,(11)

for 0 ≤ k ≤ 1.

3. Gradient and Hessian recovery. In this section we prove asymptotically
exact gradient recovery and convergent Hessian recovery results,

(12)
||εh||1,Ω

||u− uh||1,Ω
→ 1,

∑
τ∈Th

|εh|22,τ → |u|22,Ω

for the approximate error function εh ≈ u−uh described below. We first describe the
key assumption on the mesh that will play a role in these results. This mesh condition
and a slight generalization of it can be found in [3, 20].

Let e denote an interior edge in Th with adjacent triangles τ and τ ′. We say that
the quadrilateral formed by τ and τ ′ satisfies the approximate O(h2)-parallelogram
property provided that the lengths of opposite edges differ by only O(h2). The equiv-
alent property at the boundary is as follows: Let e and e′ denote adjacent boundary
edges sharing the vertex x, and let τ and τ ′ be the triangles having the edges e and
e′, respectively. Let t and t′ be the unit tangent vectors, corresponding to a counter-
clockwise orientation on τ and τ ′. Starting with e for τ and e′ for τ ′ we identify
corresponding edges of τ and τ ′ by traversing their edges counterclockwise. We say
that the triangles τ and τ ′ associated with the boundary vertex x satisfy the approxi-
mate O(h2)-parallelogram property, provided that the lengths of corresponding edges
in τ and τ ′ differ by only O(h2), and |t − t′| = O(h). The key assumption on the
triangulation follows.

Assumption 3.1 (an O(h2σ)-irregular triangulation).
1. Let E = E1 ⊕ E2 denote the set of interior edges in Th. For each e ∈ E1, τ

and τ ′ satisfy the approximate O(h2)-parallelogram property, while∑
e∈E2

|τ | + |τ ′| = O(h2σ).

2. Let P = P1⊕P2 denote the set of boundary vertices. The elements associated
with x ∈ P1 satisfy the approximate O(h2)-parallelogram property, and |P2| =
κ, where κ is fixed independent of h.

The second condition is necessary only in the case of Neumann boundary condi-
tions, ∂ΩN �= ∅. The following result, due to Bank and Xu [3], is the key lemma for
the results in this paper.

Lemma 3.2. Under Assumption 3.1, we have

||uh − u�||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(13)
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We now present a new result based on Lemma 3.2 for computing a superconvergent
approximation of the gradient. Suppose that we first solve for the linear finite element
approximation, uh ∈ Vh, and then augment this approximation by solving the residual
equation on Ṽh, the space of quadratic bumps. In other words,

B(uh, v) = F (v) for all v ∈ Vh,(14)

B(εh, v) = F (v) −B(uh, v) for all v ∈ Ṽh.(15)

One can think of this as a projection of the residual error onto the space Ṽh. We have
the following result.

Theorem 3.3. Under Assumption 3.1, we have

(16) ||u− (uh + εh)||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.

Proof. Using Galerkin orthogonality to replace εh ∈ Ṽh with ub ∈ Ṽh, the “bump”
portion of the quadratic interpolant uq = u� + ub, we get the following estimate:

||u− (uh + εh)||21,Ω � B(u− (uh + εh), u− (uh + εh))(17)

= B(u− (uh + εh), u− (uh + ub))(18)

� ||u− (uh + εh)||1,Ω||u− (uh + ub)||1,Ω.(19)

We bound the term ||u− (uh + ub)||1,Ω as follows:

||u− (uh + ub)||1,Ω ≤ ||u− uq||1,Ω + ||uq − (uh + ub)||1,Ω(20)

= ||u− uq||1,Ω + ||u� − uh||1,Ω(21)

� h2‖u‖3,Ω + h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(22)

This completes the proof.
As an immediate corollary, we see conditions under which we can expect ||εh||1,Ω

to be an asymptotically exact estimator of the true gradient error ||u− uh||1,Ω.
Corollary 3.4. Suppose that there is some constant c > 0 such that ||u −

uh||1,Ω ≥ ch. Then under Assumption 3.1, we have

(23)
||εh||1,Ω

||u− uh||1,Ω
→ 1.

Proof. It holds that

(24)

∣∣∣∣ ||εh||1,Ω
||u− uh||1,Ω

− 1

∣∣∣∣ ≤ ||u− (uh + εh)||1,Ω
||u− uh||1,Ω

.

Combining this with the estimate from Theorem 3.3 completes the proof.
Theorem 3.3 and Corollary 3.4 and their proofs have also appeared in [17, 18].
Recall that the quadratic interpolant uq ∈ V̄h of u is decomposed as the sum

uq = u� + ub with u� ∈ Vh and ub ∈ Ṽh. In the following lemma we compare the
first and second derivatives of εh and ub. The second of these results is used in the
proof of Theorem 3.6 to establish the Hessian recovery result, and the first will play
an important role in the next section, where we prove the function recovery result.

Lemma 3.5. Under Assumption 3.1, we have

||εh − ub||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω,(25) ∑
τ∈Th

|εh − ub|22,τ � h2 min(σ,1)| log h|‖u‖2
3,∞,Ω.(26)
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Proof. In the proof of Theorem 3.3, we saw that

(27) ||u− (uh + εh)||1,Ω, ||u− (uh + ub)||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.

This gives us

||εh − ub||1,Ω ≤ ||u− (uh + εh)||1,Ω + ||u− (uh + ub)||1,Ω(28)

� h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(29)

Using a standard inverse estimate, we see that

(30)
∑
τ∈Th

|εh − ub|22,τ � h−2||εh − ub||21,Ω � h2 min(1,σ) |log h| ‖u‖2
3,∞,Ω,

so we have proven both results.
The convergent Hessian recovery result follows.
Theorem 3.6. Under Assumption 3.1, we have∑

τ∈Th

|u− εh|22,τ � h2 min(σ,1)| log h|‖u‖2
3,∞,Ω.(31)

Proof. We have |u− εh|2,τ ≤ |u− ub|2,τ + |ub − εh|2,τ , so

∑
τ∈Th

|u− εh|22,τ ≤ 2

(∑
τ∈Th

|u− ub|22,τ +
∑
τ∈Th

|ub − εh|22,τ

)
(32)

� h2‖u‖2
3,∞,Ω +

∑
τ∈Th

|ub − εh|22,τ .(33)

Combining this with the second estimate in Lemma 3.5 completes the proof.
Provided that ‖u‖3,∞,Ω < ∞, the estimate in Theorem 3.5 is equivalent to

(34)
∑
τ∈Th

|εh|22,τ → |u|22,Ω.

4. Function recovery. In this section we prove that the approximate error
function εh provides efficient and reliable approximation of the true error u − uh in
the L2-norm,

(35) c1 ≤ ||εh||0,Ω
||u− uh||0,Ω

≤ c2.

We also explain why we cannot generally expect the same sort of asymptotic exactness
result which we saw for the gradient error. In other words, we cannot generally expect
that

(36)
||εh||0,Ω

||u− uh||0,Ω
→ 1,

although the constants c1, c2 may be near 1 in practice.
This first lemma will allow us to convert the gradient approximation result from

Lemma 3.5 into the function (L2) approximation results that follow.
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Lemma 4.1. Let Th be a shape-regular quasi-uniform mesh. For any b ∈ Ṽh, we
have

(37) ||b||0,Ω � h||∇b||0,Ω.

Proof. Let τ ∈ Th be given, and write b in terms of its three bump basis functions
on τ , b = c1b1 + c2b2 + c3b3 . We denote the length of the edge on which bk does not
vanish by Lk, and without loss of generality take L1 ≤ L2 ≤ L3. It holds that

||b||20,τ =
8|τ |
45

(c21 + c22 + c23 + c1c2 + c1c3 + c2c3),(38)

||∇b||20,τ =
1

3|τ |
(
(c1 − c2 − c3)

2L2
1 + (c2 − c1 − c3)

2L2
2 + (c3 − c1 − c2)

2L2
3

)
.(39)

We bound ||∇b||20,τ from below as follows:

||∇b||20,τ ≥ L2
1

3|τ |
(
(c1 − c2 − c3)

2 + (c2 − c1 − c3)
2 + (c3 − c1 − c2)

2
)

(40)

=
L2

1

3|τ | (3c
2
1 + 3c22 + 3c23 − 2c1c2 − 2c1c3 − 2c2c3)(41)

≥ L2
1

3|τ |
1

2
(c21 + c22 + c23 + c1c2 + c1c3 + c2c3).(42)

This gives us

(43) ||b||20,τ ≤ 48

45

|τ |2
L2

1

||∇b||20,τ � h2||∇b||20,τ .

Summing over triangles completes the proof.
Lemma 4.2. Under Assumption 3.1, we have

||εh − ub||0,Ω � h2+min(σ,1)| log h|1/2‖u‖3,∞,Ω,(44)

||u− (u� + εh)||0,Ω � h2+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(45)

Proof. Combining the first estimate from Lemma 3.5 with the result of Lemma 4.1
proves the first of these two estimates. We also have

(46) ||u− (u� + εh)||0,Ω ≤ ||u− uq||0,Ω + ||εh − ub||0,Ω � h3||u||3,Ω + ||εh − ub||0,Ω.

Combining this second estimate with the first completes the proof.
We see from the estimate ||u− (u� + εh)||0,Ω = o(h2) that ||εh||0,Ω is an asymptoti-

cally exact estimator of the interpolation error ||u−u�||0,Ω, provided that ||u−u�||0,Ω >
m1h

2 for some positive constant m1. We are now ready to prove the main result of
this section.

Theorem 4.3. Suppose that there are constants m1,m2 > 0, such that ||u −
u�||0,Ω ≥ m1h

2 and ||u − uh||0,Ω ≥ m2h
2. Then, under Assumption 3.1, there are

constants c1, c2 > 0, such that

(47) c1 ≤ ||εh||0,Ω
||u− uh||0,Ω

≤ c2.
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Proof. It is certainly the case that there are constants M1,M2 > 0, such that
||u− u�||0,Ω ≤ M1h

2 and ||u− uh||0,Ω ≤ M2h
2. So we have

(48)
m1

M2
≤ ||u− u�||0,Ω

||u− uh||0,Ω
≤ M1

m2
.

The proof is completed by using the fact that ||εh||0,Ω is an asymptotically exact
estimator of ||u− u�||0,Ω.

Recall that the proof of the asymptotic exactness of ||εh||1,Ω as an estimator of
||u−uh||1,Ω relied on the fact that ||u�−uh||1,Ω = o(h). We see in Lemma 4.4 below that
we need ||u� − uh||0,Ω = o(h2) to get asymptotic exactness of ||εh||0,Ω as an estimator
of ||u− uh||0,Ω.

Lemma 4.4. Under Assumption 3.1, we have

(49) ||u− (uh + εh)||0,Ω = o(h2) ⇐⇒ ||uh − u�||0,Ω = o(h2).

Proof. We have the inequalities

||u− (uh + εh)||0,Ω ≤ ||u− (u� + εh)||0,Ω + ||uh − u�||0,Ω,(50)

||uh − u�||0,Ω ≤ ||u− (u� + εh)||0,Ω + ||u− (uh + εh)||0,Ω.(51)

Lemma 4.2 completes the proof.
The rest of this section is devoted to demonstrating by example that we cannot

generally expect ||u�−uh||0,Ω = o(h2) even in an ideal situation for which we can prove
||u� − uh||1,Ω � h2| log h|1/2||u||3,∞,Ω. Thus, we cannot generally expect asymptotic
exactness in the L2-norm.

Consider the following simple problem on the unit square Ω = (0, 1) × (0, 1):

−Δu = 2x(1 − x) + 2y(1 − y) in Ω,

u = 0 on ∂Ω.

The exact solution is u = x(1 − x)y(1 − y). We take the family of uniform meshes
having mesh size h = 1

n+1 and n2 degrees of freedom located at (xi, yj) = (ih, jh);

see Figure 1. We will show that h2 � ||u� − uh||0,Ω.
Let T ∈ R

n×n be the tridiagonal matrix with stencil (−1, 2, −1). Under the
standard ordering of unknowns (left to right, bottom to top) the stiffness matrix for
this problem is given by

A = T ⊗ I + I ⊗ T = (V ⊗ V )(D ⊗ I + I ⊗D)(V ⊗ V ),(52)

Vij =

√
2

n + 1
sin

ijπ

n + 1
, Dij = δij

(
2 − 2 cos

iπ

n + 1

)
= δij4 sin2 iπ

2(n + 1)
.(53)

We note that V = V T = V −1. As a notational convenience, for x ∈ R
n2

we use
x(i,j) ≡ x(i−1)n+j . Similarly, we take φ(i,j) to be the Lagrange nodal basis function
associated with the grid point (xi, yj). We define d and r to be the error and residual,
respectively, at the grid points

d(i,j) = u(xi, yj) − uh(xi, yj) = u�(xi, yj) − uh(xi, yj),(54)

r(i,j) = h2f(xi, yj) −
∫

Ω

fφ(i,j) dxdy =
2

3
h4.(55)
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Fig. 1. Uniform mesh with n = 3.

We have Ad = r. We first argue that ||u� − uh||0,Ω ≥ h
2 ||d||, and then establish that

||d|| ≥ Ch, thereby proving that h2 � ||u� − uh||0,Ω. We begin by noting that for any
linear function g on a triangle τ , given in terms of its three nodal basis functions,
g = c11 + c22 + c33, we have

(56) ||g||20,τ =
|τ |
6

(c21 + c22 + c23 + c1c2 + c1c3 + c2c3) ≥
|τ |
12

(c21 + c22 + c23).

Therefore, if g is continuous and piecewise-linear on T , we have

(57) ||g||20,Ω =
∑
τ∈Th

||g||20,τ ≥ |τ |
2
||c||2 =

h2

4
||c||2,

where c is the vector of coefficients. The factor of 6 comes from the fact that each
coefficient appears in 6 of the summands ||g||20,τ . This proves that

(58) ||u� − uh||0,Ω ≥ h

2
||d||.

We now consider ||d|| = ||A−1r|| = 2
3h

4||A−1(e ⊗ e)||, where e ∈ R
n is the vector of

ones. It holds that ||A−1(e ⊗ e)|| = ||(D ⊗ I + I ⊗D)−1(V e ⊗ V e)||, and

(V e)i =

√
2

n + 1

n∑
j=1

sin
ijπ

n + 1
=

√
2

n + 1
cot

iπ

2(n + 1)

∣∣∣∣sin iπ

2

∣∣∣∣ .(59)

This gives us

||A−1(e ⊗ e)||2 =
h2

4

n∑
i=1

n∑
j=1

∣∣∣∣sin iπ

2
sin

jπ

2

∣∣∣∣
(

cot iπ
2(n+1) cot jπ

2(n+1)

sin2 iπ
2(n+1) + sin2 jπ

2(n+1)

)2

(60)

>
h2

4

(
cot π

2(n+1) cot π
2(n+1)

sin2 π
2(n+1) + sin2 π

2(n+1)

)2

(61)

=
h2

16

cos4 π
2(n+1)

sin8 π
2(n+1)

>
h2

16

( 1√
2
)4

( π
2(n+1) )

8
=

4

π8
h−6.(62)
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Combining these results we have ||u� − uh||0,Ω > h
2

2h4

3
2h−3

π4 = 2h2

3π4 , which completes
the argument.

5. Experiments. In this section we offer four examples which illustrate the
effectivity of our estimator and provide some comments on its computational cost. In
particular, we wish to verify (2), the key results of this paper, in practice. The exact
error for each of the examples solution is known, so we can judge the quality of our
estimator directly. Throughout this section we use eh ≡ u − uh for the exact error
and the abbreviation EFF for each of the effectivity ratios

(63)
||εh||0,Ω
||eh||0,Ω

,
|εh|1,Ω
|eh|1,Ω

,
|εh|2,Ω
|u|2,Ω

.

For the sake of convenience we abuse notation slightly by taking

(64) |εh|2,Ω ≡
√∑

τ∈T
|εh|22,τ .

This is an abuse because |v|2,Ω is infinite by its standard definition for functions
such as εh, which have a gradient jump between elements in a mesh. Additionally,
we abbreviate the standard scientific notation by placing the base 10 exponent as a
subscript, for example, 3.54−2 ≡ 3.54 × 10−2.

The quantity N appearing in the tables is the number of triangles in the mesh.
For the larger values of N , this is roughly twice the number of vertices in the mesh.
In the first four examples, for which the exact error is known, we use the error model
E = CN−p, derived from standard a priori estimates and Nh2 ∼ 1, to give a sense
of the rate of convergence of error. In particular, we give the least-squares best fit
for each of the normed errors. We note that p = 1 (resp., p = 1/2) corresponds to
what is generally called quadratic (resp., linear) convergence—in terms of the mesh
parameter h—and we use this language in the explanations below. The code used for
the numerical experiments is PLTMG [6], with modifications necessary to implement
our error estimation technique.

5.1. The simple problem. For our first experiment, we revisit the example
from section 4 which was used to demonstrate that one cannot generally expect
asymptotic exactness from our estimator in L2. We will see, however, that the func-
tion recovery is very nearly exact in this case. Recall that the problem is to find u
such that

−Δu = 2x(1 − x) + 2y(1 − y) in Ω,

u = 0 on ∂Ω.

Here Ω is the unit square, and the exact solution is u = x(1−x)y(1− y). We provide
the values of the various norms of u so that the relative errors can be readily assessed
if desired:

||u||0,Ω =

√
1

900
= 0.03̄, |u|1,Ω =

√
1

45
≈ 0.149, |u|2,Ω =

√
22

45
≈ 0.699.

This example is also used in the numerical experiments in [21, 23].
In Table 1 we see the predicted performance of the estimator in each of the square

norms, with the L2 error estimate having effectivity very near 1 on each mesh. Below,
we give the approximate error models for the function and gradient errors:

||eh||0,Ω ≈ 0.159N−1.02, |eh|1,Ω ≈ 0.307N−0.502.
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Table 1

Estimates, exact values, and effectivity for the simple problem.

N 88 441 1887 7765 31505 126919
||εh||0,Ω 1.71−3 2.93−4 6.98−5 1.62−5 3.90−6 9.64−7

||eh||0,Ω 1.65−3 3.09−4 7.22−5 1.63−5 3.93−6 9.76−7

EFF 1.04 0.947 0.966 0.993 0.994 0.987
|εh|1,Ω 3.19−2 1.36−2 6.61−3 3.14−3 1.54−3 7.67−4

|eh|1,Ω 3.14−2 1.37−2 6.61−3 3.15−3 1.55−3 7.72−4

EFF 1.01 0.998 1.00 0.997 0.996 0.996
|εh|2,Ω 0.726 0.713 0.709 0.705 0.703 0.703
|u|2,Ω 0.699 0.699 0.699 0.699 0.699 0.699
EFF 1.04 1.02 1.01 1.01 1.01 1.00

Table 2

Estimates, exact values, and effectivity for the oscillatory problem.

N 88 434 1888 7825 31679 127552
||εh||0,Ω 0.369 0.149 8.43−2 1.50−2 3.27−3 7.99−4

||eh||0,Ω 0.499 0.172 9.60−2 1.76−2 3.89−3 9.49−4

EFF 0.738 0.865 0.878 0.853 0.846 0.842
|εh|1,Ω 15.1 8.43 6.56 3.04 1.46 0.716
|eh|1,Ω 17.6 9.78 6.92 3.07 1.46 0.720
EFF 0.859 0.862 0.949 0.991 0.993 0.995
|εh|2,Ω 304 458 603 632 634 634
|u|2,Ω 632 632 632 632 632 632
EFF 0.481 0.693 0.954 1.00 1.00 1.00

We point out that we observe the predicted a priori quadratic convergence of ||eh||0,Ω
and linear convergence of |eh|1,Ω.

5.2. The oscillatory problem. In this second example we consider the situa-
tion where the exact solution still possesses no singularities, but oscillates strongly.
The problem is to find u such that

−Δu = 128π2 sin(8πx) sin(8πy) in Ω,

u = 0 on ∂Ω.

Here Ω is again the unit square, and the exact solution is u = sin(8πx) sin(8πy). The
pertinent norms of u are given below:

||u||0,Ω =

√
1

4
= 0.5, |u|1,Ω =

√
32π2 ≈ 17.8, |u|2,Ω =

√
4096π4 ≈ 632.

In Table 2 we again see effectivity approaching 1 for the gradient error and the
Hessian in both norms. The effectivity of the function error estimate tends to stay in
the 80–85% range. We see in the approximate error models below that the adaptive
refinement seems to be producing suboptimal reduction of function and gradient error:

||eh||0,Ω ≈ 36.5N−0.873, |eh|1,Ω ≈ 149N−0.443.

This is due to the fact that the two coarsest meshes are just beginning to resolve the
oscillatory behavior. When the error data from these two initial meshes is removed,
we see the expected quadratic and linear convergence for the function and gradient
errors, respectively. More precisely, the exponents for the L2 and H1 error models
are p = 1.09 and 0.536, respectively.
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Table 3

Estimates, exact values, and effectivity for the slit domain problem.

N 94 481 2031 8334 33704 135632
||εh||0,Ω 2.81−2 3.20−3 5.26−4 1.39−4 3.43−5 8.51−6

||eh||0,Ω 0.122 3.92−2 1.33−2 3.57−3 9.08−4 1.78−4

EFF 0.230 8.18−2 3.96−2 3.88−2 3.78−2 4.78−2

|εh|1,Ω 0.419 0.231 0.132 6.93−2 3.51−2 1.62−2

|eh|1,Ω 0.590 0.331 0.189 9.91−2 4.99−2 2.25−2

EFF 0.710 0.698 0.697 0.699 0.703 0.720
|εh|2,Ωs 5.34 19.9 24.2 18.2 17.5 17.2
|u|2,Ωs 17.2 17.2 17.2 17.2 17.2 17.2
EFF 0.310 1.16 1.40 1.06 1.02 1.00
N 94 481 2031 8334 33704 135632

||εh||0,Ωs 2.81−2 3.20−3 5.04−4 1.38−4 3.43−5 8.51−6

||eh||0,Ωs 0.122 3.92−2 1.32−2 3.56−3 9.04−4 1.78−4

EFF 0.230 8.18−2 3.81−2 3.89−2 3.79−2 4.80−2

|εh|1,Ωs 0.419 0.231 6.28−2 2.69−2 1.37−2 6.89−3

|eh|1,Ωs 0.590 0.331 0.119 3.47−2 1.48−2 6.99−3

EFF 0.710 0.698 0.526 0.774 0.925 0.986

5.3. The slit domain problem. For our third example we consider a problem
for which the boundary conditions force a singularity at the origin. Because of the
infinite gradient at the origin, it is interesting to investigate the effectivity of the
estimators. The problem is to find u such that

−Δu = 0 in Ω, u(r, 0+) = 0, ∇u · n (r, 2π−) = 0, u(1, θ) = sin(θ/4).

Here Ω is the unit disk with the positive x-axis removed, and the exact solution is
u = r1/4 sin(θ/4). Though the gradient of u is infinite at the origin, |u|1,Ω is finite.
However, this is not the case for |u|2,Ω—here we must avoid the origin to get a finite
H2 seminorm. Let Ωs denote Ω with the disk of radius s about the origin removed.
In the experiments, we take s = 1/100. The pertinent norms are given below:

||u||0,Ω =

√
2π

5
≈ 1.12, |u|1,Ω =

√
π

4
≈ 0.886, |u|2,Ωs =

√
3π

32
(s−3/2 − 1) ≈ 17.2.

We note that the global smoothness condition u ∈ W 3
∞(Ω) is certainly not satisfied

here.
In Table 3 we see the clear effects of this singularity on the performance of the

function error estimates and the gradient error. Here the function error estimates
underestimate the true function error by roughly a factor of 26.5 at worst and a
factor of 5 at best, and the gradient error estimate underestimates the true gradient
error by 28% at best, though it is slowly improving. We also point out that the
second derivatives are recovered quite well. Concerning Table 3, we mention finally
that the performance of the gradient error estimate improves markedly if we restrict
our attention to the error on the subdomain Ωs, as is seen at the bottom of that table,
but the performance of the function error estimate does not improve appreciably. The
approximate error models given below, though showing subquadratic convergence of
the function error and sublinear convergence of the gradient error, are actually quite
encouraging for a problem with this sort of singularity, where we would expect p ≈ 1/8
asymptotically for the gradient error |eh|1,Ω under uniform refinement:

||eh||0,Ω ≈ 9.31N−0.894, |eh|1,Ω ≈ 5.11N−0.447.
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Table 4

Estimates, exact values, and effectivity for the jumping coefficient problem.

N 66 353 1530 6337 25734 103617
||εh||0,Ω 6.67 0.396 8.04−2 1.86−2 4.33−3 1.22−3

||eh||0,Ω 11.1 0.811 0.116 2.29−2 5.21−3 1.49−3

EFF 0.603 0.488 0.691 0.814 0.831 0.820
|εh|1,Ω 96.0 33.3 13.6 6.06 2.90 1.42
|eh|1,Ω 108 36.1 14.1 6.16 2.92 1.43
EFF 0.886 0.923 0.960 0.985 0.994 0.997

|εh|2,Ωs 1.173 2.493 2.503 2.403 2.353 2.333

|u|2,Ωs 2.323 2.323 2.323 2.323 2.323 2.323

EFF 0.504 1.07 1.07 1.03 1.01 1.00

5.4. The jumping coefficient problem. The problem is to find u such that

−akΔu = 0 in Ω, u(r, 0) = 0,

∇u · n (r, π) = 0, u(1, θ) = bk sin(αθ) + ck cos(αθ).

Here Ω is the upper half of the unit disk, which is divided into two regions having
differing coefficients of diffusion. In the first region, 0 < θ < π

4 , we have a1 = 103.
In the second region, π

4 < θ < π, we have a2 = 1. The exact solution is u =
rα(bk sin(αθ)+ck cos(αθ)), where the values α, bk, ck are determined by the boundary
conditions at θ = 0, π and the continuity of u and ak∇u · n along the interface θ = π

4
between the two regions. The boundary condition at r = 1 is chosen to match the
solution in the interior. The boundary conditions on the positive and negative x-axes
and the continuity conditions at the interface provide four equations which are linear
in b1, c1, b2, c2 (and trigonometric in α). It is clear that b1 = c1 = b2 = c2 = 0 trivially
satisfies all of the specified conditions, so we must select α so that the resulting linear
system is singular—therefore admitting nontrivial solutions. If there are any such
choices of α, then there are infinitely many. We selected the following solution, with
α ≈ 0.666422:

b1 = 1, c1 = 0, b2 ≈ 750.416, c2 ≈ −432.484,

||u||0,Ω ≈ 515, |u|1,Ω ≈ 767, |u|2,Ωs ≈ 2.323.

Again we take Ωs to be Ω with the disk of radius s = 1/100 removed. Although
u �∈ H2(Ωs) because of the jump discontinuity of ∇u at the interface between the two
regions, we abuse notation by taking

(65) |u|22,Ωs
≡

∑
τ∈Ts

|u|22,τ

for Table 4. This sum is finite because the interface between the two regions does not
pass through the interior of any of the triangles.

In Table 4, we see the data for this experiment. We point out that the performance
of the various error estimates based on the approximate error function seem to be
unaffected by the jump in the coefficient. In particular, we see effectivity ratios near
or approaching 1 for the gradient error and the Hessian, and slightly better than 80%
for the function values in each norm. The approximate error models given below
show error convergence which is better than one would expect, with superquadratic
convergence in function error and superlinear convergence in gradient error:

||eh||0,Ω ≈ 1.123N
−1.20, |eh|1,Ω ≈ 1.583N

−0.589.
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Fig. 2. The meshes for the jumping coefficient problem after three stages of adaptive refinement,
using Bank–Xu gradient recovery estimates (left) and bump function error estimates (right). The
mesh on the left has 804 vertices and 1534 triangles, and the mesh on the right has 808 vertices and
1530 triangles.

These convergence rates are elevated in the models because of the significant error re-
duction in the early stages of refinement. When we remove the error data from the first
two meshes, the convergence rates drop to the more normal quadratic and linear levels.

In addition to having an rα, α < 1 singularity at the origin, the solution also
has a jump discontinuity in its gradient at θ = π/4. It is relevant at this point to
consider which of these two types of singularities has the stronger (negative) effect on
the performance of the estimator for problems of this sort. Considering that the slit
domain problem possesses only an rα singularity and that the α for that problem is
smaller than the one for this problem, comparing the performance of the estimator in
both cases suggests that rα singularities are more influential than jump discontinuities
in the gradient. In fact, a careful reading of either the Bank–Xu paper [3] or the Xu–
Zhang paper [20] reveals that the key superconvergence result for this paper,

||uh − u�||1,Ω = o(h),

holds for u having a finite number of gradient jump discontinuities provided that u is
sufficiently smooth in each of corresponding subdomains. So we see that, asymptot-
ically, the effectivity of the estimator is affected by jumping coefficients only if they
lead to singularities which are worse than gradient jump discontinuities.

We also mention that, for problems of the sort for which we can expect gradient
jumps, a naive application of gradient recovery error estimators will lead to sub-
optimal and sometimes terrible performance. This is because of the fact that gradient
recovery schemes involve some sort of local or global averaging. If care is not taken
to avoid averaging across an interface where ∇u jumps, then the local error estimates
near the interface will tend to overestimate the actual error there—particularly when
uh approximates u well. To illustrate this explicitly we give a brief summary of the
result using the Bank–Xu recovery technique, which is a global recovery technique. In
Figure 2, we see a clear qualitative difference between the sort of refinement produced
by the bump estimator and the naive use of the Bank–Xu estimator—the sort of
difference we might have guessed due to the overestimation of error near the interface
for the latter. The error model for this refinement is |eh|1,Ω ≈ 845N−0.487, with
effectivity EFF ≈ 3 as the mesh is refined. We are not trying to make the point that
this sort of bad behavior is unavoidable for gradient recovery schemes—in practice it
can be avoided by taking care to not average out a gradient jump where there should
be one. Bank and Xu noted this in an example in [4], and performing their gradient
recovery scheme for our problem on each subdomain separately restores the optimal
performance. The point that we are trying to make with this discussion is that with
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Table 5

Timing comparison: the ratio of the costs to compute εh and R∇uh. Ratios in the first three
rows correspond to using SGS-CG to compute εh, and the bottom three rows correspond to using
unpreconditioned CG.

Simple 3.17 3.37 3.53 3.25 2.66 2.24
Oscillatory 3.15 4.07 3.61 3.40 2.05 2.38
Slit domain 3.19 2.83 2.85 3.01 2.66 2.03

Simple 2.50 2.56 2.63 2.38 1.98 1.49
Oscillatory 2.45 2.53 2.74 2.59 1.44 1.53
Slit domain 2.55 2.09 2.15 2.12 1.94 1.40

the bump error estimator it is not necessary to treat subdomains differently. We
think that this is an attractive feature of the estimator, particularly in cases where
the number of jumps in the coefficient on the diffusion term (and hence the number
of jumps in the gradient of the solution) is large, or where there are small or narrow
regions in which the number of elements needed to get a good approximation of the
true solution there is smaller than the number of elements needed to perform any of
the standard gradient recovery techniques.

5.5. Computational cost. Although the linear system involved in the compu-
tation of εh can be expected to have roughly three times the number of unknowns as
that for computing uh, the system itself is readily solved because it is well-conditioned
(see [5, p. 11], for example). But how does the cost compare with that of various gradi-
ent recovery schemes? We content ourselves with a direct comparison to the recovery
scheme of Bank and Xu as it is currently implemented in PLTMG. In Table 5, we have
the ratios of the times needed to compute εh and the recovered gradient R∇uh for
three of the four problems considered here—the jumping coefficient problem was omit-
ted because it would have required a modification of the gradient recovery subroutines
in PLTMG. We have used the symmetric Gauß–Seidel method as a preconditioner for
CG in the computation of εh, as in all of the experiments above, and these data
correspond to those experiments. For example, the ratio 3.17 for the simple prob-
lem corresponds to the coarsest mesh (88 triangles for both εh and R∇uh), and 2.24
corresponds to the finest mesh (126919 triangles for εh and 127020 for R∇uh).

For these three problems, unpreconditioned CG can be used instead with no loss
in effectivity. When this is done, the timing ratios improve, as is shown in the bottom
three rows of Table 5. We generally advocate using some sort of preconditioner for
problems such as the jumping coefficient problem because otherwise one notices a drop
in effectivity. We suggest that the greater computational cost, still quite small with
respect to the total computational cost of the adaptive algorithm, may be worthwhile
for this very robust and flexible error estimator. The robustness of the estimator is
seen theoretically in that, even in situations where the assumptions taken here do not
apply, we can fall back on the “old” analysis based on the milder saturation assumption
and on the strengthened Cauchy inequality, which hold under quite general conditions
(see [9] and [10, pp. 436–445]). The flexibility of the approximate error function
εh ≈ u − uh is clear in that it can be used to measure error in other norms or to
approximate error in certain functionals of interest (see [18]), as well as for mesh
smoothing procedures such as that proposed by Bank and Smith [2].

6. Final remarks. We have given proof and numerical evidence of the effective-
ness of the hierarchical basis type bump function estimator εh ≈ u− uh in recovering
function values and first and second derivatives. The proofs offered here are based on
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the superconvergence result ||uh − u�||1,Ω = o(h), which is usually used in the proofs
of the effectiveness of gradient recovery methods. In our proofs, we replace the stan-
dard saturation assumption and strengthened Cauchy inequality used in the analysis
commonly given for hierarchical basis methods with relatively mild mesh symmetry
conditions and relatively strong smoothness assumptions, which are sufficient but
often not seen to be necessary in practice. We thereby obtain stronger theoretical
results than are generally given for such estimators, and these results are borne out
in practice. The approximation εh ≈ u−uh is provably quite robust and can be used
for error estimation and adaptivity in a variety of norms and other measures.

In terms of the asymptotically exact recovery of gradient error, our estimator
||∇εh||0,Ω has a lot of very good competition in the many gradient recovery procedures
proposed in the literature. In addition to the recovery procedure of Bank and Xu,
which is mentioned several times above, we also cite the local least-squares fitting of
Zienkiewicz and Zhu [23, 24] (perhaps the most popular), the polynomial preserving
method of Zhang and Naga [16, 21], and the method proposed by Wiberg and Li
[15, 19], which has the most in common with our own in that it can be used directly
to produce a locally quadratic (though not globally continuous) approximation of the
error u−uh. These methods should also be suitable for recovering second derivatives—
Bank and Xu argue as much for their estimator—but not much has been written in
the gradient recovery literature about estimating the function error. The notable
exception in this regard is in the aforementioned works of Wiberg and Li, where
numerical evidence of efficiency and reliability of their estimator are given, but no
analysis is provided.

We now briefly consider a few straightforward generalizations of what has been
presented here. The O(h2σ)-irregular triangulation assumption is generalized in [20],
where Xu and Zhang call it Condition(α, σ). We note that the σ in the Xu–Zhang
paper plays the role of the 2σ used in both the Bank–Xu paper and our own, and an
O(h1+α)-parallelogram property is used instead of an O(h2)-parallelogram property.
In their paper, Xu and Zhang also use the less stringent regularity condition u ∈
H3(Ω) ∩ W 2

∞(Ω). Under these assumptions and a few natural assumptions on the
bilinear form for the problem, they prove that

(66) ||uh − u�||1,Ω � h1+min(α,1/2,σ/2)(||u||3,Ω + |u|2,∞,Ω).

The results in this paper can be modified in the obvious way to incorporate the Xu–
Zhang version of the mesh symmetry conditions and the weaker regularity assumption,
with no change in the proofs.

We will mention two other ways in which the arguments given here can be readily
generalized. The first is to consider linear simplicial elements in R

n, n > 2. Recall
that the key result from which all of the other estimates were proved was of the form

(67) ||uh − u�||1,Ω = o(h),

where uh is the linear finite element approximation and u� is the linear Lagrange
interpolant. Brandts and Kř́ıžek [7, 12] show that

(68) ||uh − u�||1,Ω � h2||u||3,Ω

on very regular meshes for u ∈ H1
0 (Ω) ∩ Hs(Ω) and s = 3 for n ≤ 5 and s > n/2

for n ≥ 6. Any s greater than 3 is needed only to ensure that the nodal interpolant
u� can be well-defined. Chen [8] generalizes the argument of [3] to mildly structured
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tetrahedral meshes in R
3 to obtain

(69) ||uh − u�||1,Ω � h1+min(1,σ)||u||3,∞,Ω,

where u ∈ H1
0 (Ω) ∩W 3

∞(Ω) and σ measures the violation of an O(h2)-parallelepiped
property. With such superconvergence results, the extension of our results proceeds
in the obvious fashion.

Another generalization would be to consider hierarchical error estimators for
higher order elements. For example, let V̂h = V̄h ⊕ (V̂h \ V̄h) be the piecewise cubic
finite element space, which we think of hierarchically. If ūh ∈ V̄h is the finite element
solution, we might want to estimate the error u− ūh using a function in V̂h \ V̄h; call
it ε̄h. Li [13, 14] has shown that Lagrange interpolation does not generally give the
analogous superconvergence results for elements of degree 3 or higher in R

2, but we
are free to use some other appropriate interpolation scheme. Let Πq : C(Ω̄) → V̄h and

Πc : C(Ω̄) → V̂h be defined by

Πqu(vi) = Πcu(vi) = u(vi) for vertices vi,∫
ej

u− Πqu ds =

∫
ej

(u− Πcu)v ds = 0 for edges ej and linear functions v,

∫
τ

u− Πcu dx = 0 for triangles τ.

Huang and Xu [11] argue that

(70) ||ūh − Πqu||1,Ω � h2+min(1,σ)/2(||u||4,Ω + |u|3,∞,Ω), Πcu− Πqu ∈ V̂h \ V̄h.

One might correctly infer from the statement of the result that a similar argument to
those found in [3, 20] is used. With an estimate like this, the analogue of Theorem 3.3
can be proved in the obvious way. Using arguments like those given in Lemma 3.5
and Theorem 3.6, we see that our approximate error function ε̄h ≈ u − ūh provides
superconvergent approximation of ||u−ūh||2,Ω and convergent approximation of ||u||3,Ω.
Finally, arguing along the same lines as in section 4 we get even better results than in
the case of piecewise linears, because it actually does hold that ||ūh−Πqu||0,Ω = o(h3).
Huang and Xu have plans to extend their results to higher order elements as well,
and the analogous results should be able to be plugged into our framework with little
difficulty.
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