Skip to main content
Article
High-Order Method for Evaluating Derivatives of Harmonic Functions in Planar Domains
SIAM Journal on Scientific Computing
  • Jeffrey S. Ovall, Portland State University
  • Samuel E. Reynolds, Portland State University
Document Type
Post-Print
Publication Date
1-1-2018
Subjects
  • Harmonic functions,
  • Integral equations,
  • Boundary value problems,
  • Dirichlet problem
Abstract

We propose a high-order integral equation based method for evaluating interior and boundary derivatives of harmonic functions in planar domains that are specified by their Dirichlet data.

Description

© 2018, Society for Industrial and Applied Mathematics

DOI
10.1137/17M1141825
Persistent Identifier
https://archives.pdx.edu/ds/psu/26690
Citation Information
Ovall, J. S., & Reynolds, S. E. (2018). A High-Order Method for Evaluating Derivatives of Harmonic Functions in Planar Domains. SIAM Journal on Scientific Computing, 40(3), A1915-A1935.