Skip to main content
Contribution to Book
Growth of Oriented Thick Films of Gallium Nitride From the Melt.
GaN and Related Alloys (1999)
  • Jeffrey S. Dyck, John Carroll University
  • K. Kash
  • M. T. Grossner
  • C. C. Hayman
  • A. Argoitia
  • N. Yang
  • M.-H. Hong
  • M. E. Kordesch
  • J. C. Angus

While significant strides have been made in the optimization of GaN-based devices on foreign substrates, a more attractive alternative would be homoepitaxy on GaN substrates. The primary motivation of this work is to explore the growth of thick films of GaN from the melt for the ultimate use as substrate material. We have previously demonstrated the synthesis of polycrystalline, wurtzitic gallium nitride and indium nitride by saturating gallium metal and indium metal with atomic nitrogen from a microwave plasma source. Plasma synthesis avoids the high equilibrium pressures required when molecular nitrogen is used as the nitrogen source. Here we report the growth of thick oriented GaN layers using the same technique by the introduction of (0001) sapphire into the melt to serve as a substrate. The mechanism of this growth is not established, but may involve transport of the metal as a liquid film onto the sapphire and subsequent reaction with atomic nitrogen. The films were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. X-ray diffraction showed that the GaN films were oriented with their c-axes parallel to the sapphire c-axis. The TEM analysis confirmed the orientation and revealed a dislocation density of approximately 1010 cm-2. The E2 Raman active phonon modes were observed in the GaN films.

Publication Date
Stephen J. Pearton, Chihping Kuo, Alan F. Wright, Takeshi Uenoyama
Materials Research Society
Materials Research Society symposium proceedings
Citation Information
Jeffrey S. Dyck, K. Kash, M. T. Grossner, C. C. Hayman, et al.. "Growth of Oriented Thick Films of Gallium Nitride From the Melt." WarrendaleGaN and Related Alloys Vol. 537 (1999)
Available at: