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Generalized linear stability of noninertial coating flows over topographical
features
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The transient evolution of perturbations to steady lubrication flow over a topographically patterned
surface is investigated via a nonmodal linear stability analysis of the non-normal disturbance
operator. In contrast to the capillary ridges that form near moving contact lines, the stationary
capillary ridges near trenches or elevations have only stable eigenvalues. Minimal transient
amplification of perturbations occurs, regardless of the magnitude or steepness of the topographical
features. The absence of transient amplification and the stability of the ridge are explained on
physical grounds. By comparison to unstable ridge formation on smooth, flat, and homogeneous
surfaces, the lack of closed, recirculating streamlines beneath the capillary ridge is linked to the
linear stability. © 2005 American Institute of Physics. �DOI: 10.1063/1.1945627�

I. INTRODUCTION

Coating flows over surfaces with topographical texture
are essential for the fabrication of numerous devices by pho-
tolithography, including microelectronic components, inte-
grated circuits, magnetic disks, compact disks, and optical
devices. The most effective way to produce the required thin
and uniform liquid layers is by spin coating, a method that is
widely used in the microelectronics industry for depositing
photoresist films. Because of its industrial and technological
relevance, liquid film planarization during spin coating has
been the focus of numerous theoretical studies.1–4

It is quite common for capillary bumps to occur during
the coating process, especially in the vicinity of sharp edges
on substrate features such as steps, trenches, and mounds.
Stillwagon and Larson5,6 examined the leveling and flow of
epoxy and photoresist films over a silicon substrate contain-
ing axisymmetric trenches and compared the profilometric
measurements to the results from a lubrication model. Finite
element solutions by Peurrung and Graves7 compared favor-
ably to interferometric studies of the film thickness and re-
vealed the source of such phenomena as “pileups” and
“wakes” caused by capillary ridges.

Kalliadasis et al.8 recently examined a lubrication model
based on Stillwagon and Larson’s earlier work for slow, vis-
cous flow over an isolated rectangular trench or mound for a
wide range of feature sizes. This analysis revealed that a
capillary ridge forms at the entrance to a trench �step-down�
and a depression at the base of a mound �step-up�, and the
ridge amplitude increases with the depth or height of the
substrate feature. Mazouchi and Homsy9 subsequently solved
the full Stokes flow equations. For capillary number Ca

�10−2, the Stokes solution for the film height reduced to the
lubrication prediction even for steep features. For Ca�1,
however, the amplitude of the capillary bump is diminished,
and the liquid film conforms closely to the substrate topog-
raphy.

On homogeneous surfaces, the presence of a capillary
ridge in coating flows driven by either a body force10–13 or a
surface tension gradient14–18 is linked to the instability of the
advancing front to transverse disturbances that evolve into
fingers, or rivulets, at the moving contact line. Suppression
of the capillary ridge results in a linearly stable film.12,19 This
linkage of the capillary ridge to instability is also supported
by results from recent studies of liquid film dynamics on
chemically patterned substrates. Liquid confinement to a nar-
row wetting strip induces a significant transverse curvature
of the free surface,20,21 which suppresses the capillary ridge
and fingering instability.22,23 By contrast, Kalliadasis and
Homsy24 recently found that the stationary capillary ridge
near an isolated topographical step-down is asymptotically
stable to transverse perturbations. They noted, however, that
because the linearized disturbance operator is non–normal,
perturbations to the film could possibly grow by orders of
magnitude on a transient time scale, thereby exciting nonlin-
ear effects and resulting in an instability. They did not per-
form a nonmodal analysis or examine the pseudospectra of
the disturbance operator.

The present work is a natural extension of this previous
study24 to a nonmodal analysis of the disturbance operator.
The initial perturbations localized near the capillary ridge,
which experience the largest amplification over various time
intervals, are determined, and the evolution of these optimal
perturbations is investigated. The analysis is also extended to
topographical features of finite width �“mounds” and
“trenches”�. Despite the association of a capillary ridge with
the fingering instability in coating flows over flat surfaces,
this result does not hold for flow over topographical features.
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It is shown in Sec. VI that the stability of both types of
capillary ridges can alternatively be inferred from the stream-
lines of the flow. Instability of the base state is linked to the
existence of closed streamlines �in the reference frame that
renders the ridge stationary�, which indicates the presence of
recirculation. This criterion distinguishes between the insta-
bility of capillary ridges in films with advancing10,11,14 or
receeding contact lines25,26 and the stability of stationary
capillary ridges induced by topographical features, and also
links the instability to the internal flow pattern of the film.

II. FORMULATION OF BASE STATE ANALYSIS

Consider the motion of a thin liquid film driven by a
body force over a topographically patterned substrate. The
fluid has density �, viscosity �, and surface tension �. The
film has characteristic velocity U and thickness hc far away
from the topographical feature. For flow driven by gravity,
the characteristic velocity is given by U=�g sin���hc

2 /�,
with � the inclination angle of the substrate from horizontal.
For centrifugally driven flow, the characteristic velocity is
U=hc

2��2r /�. The angular velocity of rotation is denoted by
�, and r is the radial coordinate measured from the axis of
rotation. If the characteristic length of the surface feature is
much less than r, then the velocity of the fluid is nearly
constant in the vicinity of the feature.6 This approximation is
implicitly assumed in the derivation that follows. A sche-
matic diagram of the flow being considered is shown in Fig.
1.

Within the lubrication approximation, for flow in the x̂
direction that is driven by an external body force, the dimen-
sionless equation governing the evolution of the film thick-
ness h�x ,y , t� is given by8

�h

�t
+ �h3�x + � · �h3 � �2�h + S�� = 0, �1�

where S�x�=D�1/2−1/� tan−1�x /��� is the surface profile of
the solid substrate for an isolated step-down. �This equation
and the analysis that follows can easily be generalized to
flows subject to an external shear stress 	, where U

=	h / �2��; the term hx
3 is then replaced by hx

2.� The height of
the step-down is determined by the constant D, and the
steepness is controlled by �. The scaling used to nondimen-
sionalize h, D, and S is hc. The dynamic capillary length,10

l=hcCa−1/3, with Ca=�U /� the capillary number, is used to
nondimensionalize x and �. Typical one-dimensional, steady-
state base flow solutions h0�x� to this equation, subject to the
conditions h0�x�→1 as x→ ±
, are shown in Fig. 2. The
nonhomogeneous profiles, whose capillary ridge amplitude
increases with feature depth and wall steepness, are in agree-
ment with the previous studies.8,24

The dimensionless velocity profile in the streamwise di-
rection, from which Eq. �1� is derived, is

u�x,z� =
1

h0
3�h0z −

z2

2
� . �2�

The stream function �, defined by u=�� /�z, therefore has
the simple form

� =
1

h0
3�h0z2

2
−

z3

6
� . �3�

The vertical velocity w�x ,z� can be obtained from
w=−�� /�x. Streamlines are shown for flow over topographi-
cal features with finite width in Sec. V.

III. FORMULATION OF LINEAR STABILITY ANALYSIS

The stability of Eq. �1� to disturbances in the transverse
direction is analyzed by letting h�x ,y , t�=h0�x�
+�G�x , t�exp�iqy�, with �1 and q the wavenumber of the
disturbance. Substituting for h in Eq. �1� and linearizing with
respect to G, the resulting equation for the evolution of per-
turbations is

�G

�t
= −

�

�x
�h0

3� �3G

�x3 − q2�G

�x
� + 3

1 − h0
3

h0
G	 − 3

�

�x
�h0

2G�

+ h0
3�q2�2G

�x2 − q4G� . �4�

Because the discrete spectrum does not exist above a critical
wavelength,24 the boundary conditions for a modal stability
analysis are that G is bounded as x→ ±
 so that the continu-
ous eigenvectors can be determined. For a nonmodal analysis
of the behavior of perturbations to the capillary ridge, how-

FIG. 1. Sketch of flow over a topographical step-down. The fluid flows from
left to right with characteristic velocity U and thickness hc away from the
topographical feature. This topographical step-down has the profile S�x�
=D�0.5− �1/��arctan�x /���, where D is the feature depth and � the wall
steepness. The orthogonal coordinate system �x ,z� has its origin on the
step-down.

FIG. 2. Numerical solution of Eq. �1� for several values of the step height D
and steepness �.
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ever, it is most appropriate to focus on disturbances that are
localized near this ridge. The decay boundary conditions G
→0 as x→ ±
 can then be imposed. The influence of these
boundary conditions was checked by successively increasing
the domain size. A negligible influence on the transient am-
plification of perturbations to the ridge was found as the
domain length was increased. A more general condition that
G is bounded was also used in some of the numerical works,
but this boundary condition has only a minor effect on the
transient amplification of perturbations and does not affect
the results near the capillary ridge.

The linearized equation governing the evolution of per-
turbations to the flow, Eq. �4�, can be discretized via a cen-
tered difference scheme and can be expressed as

dv
dt

= Av , �5�

where v�t� is the discrete representation of G�x , t�. For all
driven films with spatially nonuniform base states, the dis-
turbance operator A is non-normal, so traditional eigenvalue
analysis formally predicts only the asymptotic t→
 behav-
ior of solutions to the linearized equation.16–18,27 Significant
perturbation amplification could occur on transient time
scales and possibly induce nonlinear effects, which might
lead to an observed instability even if the spectrum of A is
confined to the stable half plane.

In generalized linear stability theory, which captures the
transient behavior of solutions to Eq. �5�, the propagator is
most conveniently analyzed in the Euclidean, or l2, norm.
The spectral norm of the propagator, 
exp�tA�
2, which rep-
resents the maximum amplification of any possible initial
condition for Eq. �4�, is equivalent to the leading singular
value found from the singular value decomposition �SVD� of
the propagator, which is given by27

exp�tA� = U�V†, �6�

where † denotes the Hermitian transpose. With this inner
product that generates the Euclidean norm for the vector
space, a complete set of orthogonal perturbations �the col-
umns of V� can be found and ordered by growth over time t
from the SVD. The columns of U are the corresponding
evolved states at time t, and the magnitude of each state is
given by the associated element of the diagonal matrix �.
The associated vector norm is then equivalent to the usual
definition of length of a vector:


v
2 = �v†v�1/2 = ��
i=1

n

�vi�2�1/2

, �7�

where vi are the n elements comprising v.
For perturbations to the free surface flow �which are

square integrable�, the relevant norm is the L2 norm of the
evolving perturbation, which is given by


G
 = �
−





�G�2dx�1/2

. �8�

For perturbations without compact support, the relevant mea-
sure is the norm per unit length. In practice, since the base

flow and perturbations must be determined numerically, a
discrete representation of this norm must be employed. If the
grid spacing is fine and uniform, the l2 norm provides a
simple, discrete approximation of the required numerical in-
tegral. For nonuniform grids, however, this discrete norm
does not measure the quantity of interest, since the perturba-
tion values in the most dense regions of the mesh dominate
the l2 norm. In order to overcome this difficulty while retain-
ing the benefits of this generalized linear stability analysis,
new variables can be introduced such that the analysis still
proceeds in the Euclidean norm.27

Introduce a positive definite Hermitian form M such that
the inner product is defined by

�v,v� � v†Mv . �9�

In the simplest case, M would be a diagonal matrix with
entries Mii=�xi, where �xi is the grid spacing between node
points i and i+1. The associated vector norm is 
v
2*

��v†Mv�1/2, where 2* indicates the discrete analog of the L2

norm. Defining the new variables u=M1/2v, the dynamical
system in Eq. �5� becomes

du

dt
= Du , �10�

with D=M1/2AM−1/2 and 
u
2= �u†u�1/2= 
v
2*. The stability
analysis can then be conducted using these new variables,
since the l2 norms of u and D are the discrete representations
of the L2 norms of G and A, respectively. Using such a
transformation of variables yields results from the transient
analysis that are mesh independent �and that are identical to
results for a very dense, uniform mesh�, as required.

Alternatively, the temporal evolution of specific initial
conditions can be determined by numerically integrating Eq.
�4� forward in time, although the initial disturbance must be
arbitrarily selected. The most rapidly growing perturbation
and its amplification over a specified time interval tf can be
determined from this approach, however, through the appli-
cation of a power method to Eq. �4�, which is equivalent to
solving a series of initial value problems.28 A first guess for
the disturbance is integrated forward in time from t=0 to t
= tf. This result is then integrated backward in time from t
= tf to t=0 with the adjoint equation associated with Eq. �4�
to find the new initial condition. This procedure is repeated
until convergence to the perturbation with maximum ampli-
fication is attained. Results based on a finite element discreti-
zation of Eq. �4� and an implicit time step based on Gear’s
method agree with those reported below, which further con-
firms the validity of the numerical methods.

IV. RESULTS: STEP-DOWN

A. Modal analysis

Assuming exponential time dependence for G in Eq. �4�
gives rise to the discretized eigenvalue problem �u=Du, or
equivalently �v=Av, since the eigenvalues � are indepen-
dent of the choice of norm. The eigenvalues of D and the
SVD of exp�tD� were calculated using MATLAB5.3, and the
accuracy of the numerical computations was determined by
mesh refinement. In addition, the numerically determined ei-
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genvalues for the continuous spectrum were found to be in
excellent agreement with the analytical relation24 �=−q4 for
the least stable mode. The leading eigenvector for the base
flow with D=6 and �=0.10 is plotted in Fig. 3 for several
wavenumbers q. The eigenvector is localized near the capil-
lary ridge only for sufficiently large q and evolves into the
leading continuous eigenfunction for small q. It is interesting
to note that the discrete eigenfunctions are centered near the
depression in the base flow upstream of the capillary ridge
rather than at the ridge itself. Eigenvectors for other base
flows are qualitatively similar, although the discrete eigen-
functions move closer to the capillary ridge when the ampli-
tude of this ridge is smaller.

B. Transient growth analysis

Away from the topographical step-down, the base flow is
given by the constant solution h0=1, so the linearized distur-
bance operator for these isolated regions is normal. Since a
flat film consequently has a complete set of orthogonal
eigenvectors and is linearly stable without inertia,29 amplifi-
cation of disturbances far from the capillary ridge cannot
occur. The investigation of disturbance amplification is there-
fore focused on disturbances that are localized near the cap-
illary ridge and decay as x→ ±
. The transient evolution of
such disturbances is investigated for numerous values of the
parameters D and �, including those corresponding to each
base flow shown in Fig. 2, by computing the temporal evo-
lution of 
exp�tD�
. The maximum amplification of any �in-
finitesimal� disturbance applied to the system is plotted in
Fig. 4 for D=6 and �=0.10 and in Fig. 5 for D=2 and �
=0.01. The transient amplification is largest for the smallest
wavenumbers, but the maximum amplification ratio is less
than 2 for any possible initial disturbance to any of the base
states considered. Interestingly, the maximum amplification
of localized disturbances is only very weakly affected by the
height of the step, D, and the steepness of the topographical
feature, �. These results indicate that although the base state
has pronounced spatial variation in the vicinity of the topo-
graphical feature �i.e., the induced capillary ridge�, the gov-
erning disturbance operator is only weakly non-normal, and
this weak non-normality has a minimal effect on the tempo-
ral evolution of disturbances to the system. This limited non-

normality is expected because the discrete spectrum vanishes
for small wavenumbers, indicating that the capillary ridge is
only weakly affected by long-wavelength transverse pertur-
bations. Instabilities can still occur as the liquid-solid contact
line first passes over the topographical features �or even ho-
mogeneous regions of the substrate�, but examination of such
cases is beyond the scope of the current work. The evolution
of the unperturbed free-surface profile as the contact line
moves over such topographical features has recently been
determined within the Stokes flow regime by Gramlich et
al.30

The robust stability and minimal transient amplification
of disturbances to the film profile are in complete agreement
with recent results from the work of Bielarz and
Kalliadasis.31 These authors studied the nonlinear evolution
of particular disturbances applied to time-dependent, thin
film coating flows over topography. Even for perturbations
that varied sinusoidally in the transverse direction, the ratio
of the amplitude of the evolved perturbations to their initial
amplitude was less than unity at any time. For the optimal
disturbances considered in the present work, which �based on
the linear theory� experience the largest amplification of any
possible perturbation, the maximum amplification ratio in the
2-norm, 
exp�tD�
2, increases only slightly above unity be-

FIG. 3. The least stable eigenvector G for the base flow with D=6 and �
=0.10 for several wavenumbers q. The eigenvectors are normalized such
that �x=−20

x=10 G2dx=1.

FIG. 4. The maximum amplification ratio of a disturbance applied to the
film at time t=0 for the base flow with D=6, �=0.10, and several wave-
numbers q.

FIG. 5. The maximum amplification ratio of a disturbance applied to the
film at time t=0 for the base flow with D=2, �=0.01, and several wave-
numbers q.
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fore decaying to zero for t�1. In the 
-norm, which char-
acterizes the amplitude rather than the magnitude, even these
optimal perturbations decay monotonically.

C. Optimal perturbations

The optimal perturbation Vopt is defined as the distur-
bance of transverse wavenumber q, applied to the film at t
=0, that undergoes the maximum possible amplification of
any disturbance over the time interval t and is given by the
first column of the matrix V. The corresponding evolved
state Uopt is the �normalized� shape into which Vopt evolves
after time t, i.e., from Eq. �6�, exp�tD�Vopt=�maxUopt, with
�max= 
exp�tD�
. The amplification plotted in Figs. 4 and 5 is
experienced by Vopt�t ,q�, while suboptimal disturbances will
experience even less amplification than those presented here.
Further details on optimal perturbations are given in Refs. 17
and 27.

The optimal perturbations to the film and the corre-
sponding evolved states after a time interval t, found from a
singular value decomposition of exp�tD�, are plotted in Figs.
6 and 7 for D=6 and �=0.10 for q=0.10. Other base states
and small wavenumbers yield similar perturbations and
evolved states. The optimal excitations that undergo the
maximum amplification at short times are focused at the cap-
illary ridge but do not even double in magnitude before they
begin to decay, as evident from Fig. 4. The optimal distur-

bances for later times also have a structure near the begin-
ning of the computational domain, since they are convected
further along the film during the time interval considered.
Because the magnitude and duration of amplification of dis-
turbances as they pass through the capillary ridge are very
small, the evolved states become localized oscillations �due
to the imposition of decay boundary conditions at the ends of
the computational domain� that decay spatially and tempo-
rally.

V. FINITE FEATURES

The stability of flow over finite features was also inves-
tigated. A highly localized surface elevation, or mound, can
be described by the surface profile

Smound�x� =
D

�
�tan−1� x

�
� − tan−1� x − w

�
�	 , �11�

where w is the dimensionless width of the feature, while a
localized surface indentation, or trench, is described by

Strench�x� = D − Smound�x� . �12�

The base state profiles h0�x� and streamlines ��x� for flow
over a mound and trench are shown in Figs. 8 and 9, respec-

FIG. 6. The optimal disturbances that undergo maximum amplification over
the time interval t for the base flow with D=6 and �=0.10 for q=0.10.

FIG. 7. The evolved states after time t corresponding to the disturbances in
Fig. 6.

FIG. 8. Base state profile and streamlines for flow over a mound. The
parameters are D=1, �=0.1, and w=5. The magnitude of the stream func-
tion � for the dashed lines begins at 0.30 and sequentially decreases by 0.05.

FIG. 9. Base state profile and streamlines for flow over a trench. The pa-
rameters are D=1, �=0.1, and w=5. The magnitude of the stream function
� for the dashed lines begins at 0.30 and sequentially decreases by 0.05,
while the value for the dotted line is 0.01.
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tively, for D=1, �=0.1, and w=5. Profiles for other param-
eters can be found in Ref. 8, and results from the analysis of
film profiles for different regions in parameter space are
analogous to those discussed below. The stability analysis for
flow over finite features proceeds as in Sec. III for flow over
an isolated step-down. Since the coefficients of the linearized
disturbance evolution equation depend only on h0�x� and q
�and not S�x��, Eq. �4� is valid for arbitrary topography. The
least stable eigenvectors for several wavenumbers q are
shown in Fig. 10 for flow over a mound and in Fig. 11 for
flow over a trench. Although the shape of the eigenvectors
differs somewhat from that found in Fig. 3 for the isolated
step-down, the general results are similar. As shown in Fig.
12, the dispersion curves differ only slightly from those for
flow over an isolated step-down.24 There is a critical wave-
number qcrit below which the discrete spectrum vanishes. In
these studies, it was found that qc�2.45 for an isolated
mound and 2.8 for an isolated trench. Above this wavenum-
ber, the decay rates for the discrete modes are slightly
smaller than those for the continuous modes that are given
by �=−q4. Also, for a given q, disturbances to flow over the
mound decay slightly slower than disturbances to flow over
the trench.

The transient evolution of disturbances to the flow over
finite features was also investigated by computing 
exp�tD�

vs t for D given by Eq. �10�. As expected from the results for
flow over an isolated step-down in Sec. IV B, essentially no
transient amplification of perturbations occurs, so the results
are not shown here. These results from the analysis of flow
over finite topographical features indicate that, as for flow
over an isolated step-down, the stable continuous modes as-
sociated with capillary waves dominate the evolution of
long-wavelength disturbances to the film.

VI. COMPARISON TO NONINERTIAL COATING
FLOWS ON SPATIALLY UNIFORM SUBSTRATES

For coating flows driven to spread across a uniform sur-
face by an external body force, the governing evolution
equation �that additionally allows for slip at the solid-liquid
interface� corresponding to Eq. �1� is13

ht + �h3 + �h�x + � · ��h3 + �h� � ��2h − NDh�� = 0,

�13�

where ND= �3 Ca�1/3 cot��� is a dimensionless parameter �de-
noted D in Ref. 13� that indicates the relative effects of hy-
drostatic pressure to the body force in the direction of flow,
with � being the angle of inclination of the substrate from
horizontal. The dimensionless slip coefficient is denoted �.
In a reference frame that moves with the driven spreading
film �and thus renders the film profile stationary�, the unper-
turbed base state h0�x� is determined from

h0xxx = 1 −
1 + �

h0
2 + �

+ NDh0x. �14�

The dimensionless velocity profile in the streamwise di-
rection, from which Eq. �13� is derived, is

u�x,z� = �−
3

2
z2 + 3hz + ��� 1 + �

h2 + �
� − �1 + �� , �15�

where z is the coordinate normal to the substrate. The stream
function ��h0�x� ,z� is then

FIG. 10. The least stable eigenvector G for five wavenumbers q for flow
over a mound with D=1.0, �=0.1, and w=5. The eigenvectors for q=0.0,
1.0, and 2.0 are from the continuous spectrum and asymptote to finite values
as x→ ±
, while the eigenvectors for q=3.0 and 4.0 are discrete and decay
as x→ ±
. The eigenvectors are normalized such that �x=−25

x=30 G2dx=1.

FIG. 11. The least stable eigenvector G for five wavenumbers q for flow
over a trench with D=1, �=0.1, and w=5. The eigenvectors for q=0.0, 1.0,
and 2.0 are from the continuous spectrum and are asymptote to finite values
as x→ ±
, while the eigenvectors for q=3.0 and 4.0 are discrete and decay
as x→ ±
. The eigenvectors are normalized such that �x=−25

x=30 G2dx=1.

FIG. 12. Dispersion curves ��q� for flow over a mound or trench. There is
a transition from continuous to discrete modes for qc�2.45 for the mound
and qc�2.8 for the trench. The continuous spectrum �=−q4 is shown for
comparison.
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Plots of the base state profile and streamlines are shown in
Figs. 13 and 14. The film profile in Fig. 13 is linearly un-
stable to transverse disturbances, while the profile in Fig. 14,
which lacks a capillary ridge altogether, is perfectly stable.
Although not shown, the instability assumes the form of nu-
merous parallel rivulets at the advancing front that result
from lateral breakup of the traveling ridge.

The strong stability and lack of transient growth exhib-
ited by capillary ridges induced by topographical features are
strikingly different than the behaviors exhibited by capillary
ridges that form in driven spreading films. Comparison be-
tween these two classes of flows reveals two key distinctions
in the response to transverse perturbations. In particular,
while the spatially nonuniform base states for thin film flows

produce non-normal disturbance operators, the presence of a
moving contact line, which distinguishes driven spreading
films from the steady flows considered earlier, is primarily
responsible for appreciable transient growth of perturbations.
Recent nonmodal stability analyses of driven spreading
films13,15–18 have demonstrated that disturbances to the con-
tact line region undergo the largest amount of amplification
and that the optimal disturbances �the analog of Vopt in the
present work� are sharply peaked at the contact line, thereby
confirming an earlier interpretation of contact lines as noise
amplifiers.12 For steady flow over topographical features,
there are no moving contact lines, so significant transient
amplification of disturbances should not be expected and
does not occur.

Furthermore, the streamline patterns provide a more gen-
eral method for categorizing the stability of capillary ridges
and spatially nonuniform thin film flows with respect to the
spanwise disturbances responsible for fingering instabilities.
This streamline criterion also links the instability to the ve-
locity field in the film. The existence of closed streamlines,
which indicate a recirculating flow, implies that the film is
linearly unstable. As shown in Fig. 13, such closed stream-
lines appear in driven spreading films in which there are no
stabilizing forces to suppress the formation of a capillary
ridge. Streamlines in lubrication models of films driven by
surface tension gradients15 and Stokes flow solutions of
flows along an inclined plane32 are similar. By contrast, the
absence of closed streamlines �in a reference frame corre-
sponding to a stationary ridge or liquid front� is strongly
linked to film stability. These stable flows correspond to
driven spreading films with appreciable hydrostatic pressure
or gravitational drainage, in which ridges do not form, and
steady flows over topography, which have capillary ridges.

While a formal proof of this criterion for instability
based on the structure of the linear operator remains a topic
for future study, there are important qualitative differences
between capillary ridges that form due to surface heteroge-
neity and those at moving contact lines. The fingering insta-
bility of driven liquid films is a contact line instability that
also requires significant curvature of the capillary ridge �or,
equivalently, the corresponding recirculating flow beneath
the ridge�. In films with driven contact lines, the capillary
ridge is a manifestation of the competition between viscous
effects at the solid substrate, which retard the flow, and the
surface shear stress or body force that drives the flow. The
velocity field corresponding to the streamlines shown in Fig.
13 requires an appropriate pressure gradients, which in such
thin films must be supplied by a change in the interfacial
curvature. For such flows, the transient amplification occurs
as the film adjusts to disturbances at the moving contact line.
If a thin precursor film is used as the contact line model,
disturbances on the precursor film decay very slowly14 �as
−hc

3q4� because the film is extremely thin in these regions,
and these disturbances therefore essentially retain their initial
magnitude as they are convected �in a moving reference
frame� to the contact line, at which point nonmodal amplifi-
cation occurs.12,15 For the steady-state flow over topographi-
cally patterned substrates considered presently, the capillary
ridge is stationary and forms in response to a capillary pres-

FIG. 13. Base state profile and streamlines near the advancing contact line
of a thin liquid film spreading in the −x̂ direction under the influence of a
body force as determined from Eq. �14� for parameter values �=0.001, D
=0, and h0x�0�=2. The film is sufficiently thin that hydrostatic pressure is
negligible, and a pronounced capillary ridge develops near the advancing
contact line. Note the recirculating flow beneath the ridge. The streamline
shown as a solid line is a separatrix, which passes through the stagnation
point below the local minimum in the free surface behind the capillary ridge.

FIG. 14. Base state profile and streamlines near the advancing contact line
of a thin liquid film spreading in the −x̂ direction under the influence of a
body force as determined from Eq. �14� for parameter values �=0.01, D
=5, and h0x�0�=0.10. The film is sufficiently thick that hydrostatic pressure
prevents the formation of a capillary ridge near the advancing contact line.
The absence of recirculating streamlines is similar to the case of steady flow
over topographical features discussed earlier, in which the flow is similarly
stable.
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sure gradient imposed by the surface patterning �surface ten-
sion smooths out the liquid profile near the change in surface
height�, and the �dimensionless� film is relatively thick away
from this ridge. Disturbances ahead of or behind the ridge
therefore decay more quickly than disturbances to a thin pre-
cursor film. Disturbances ahead of the ridge are convected
away from it by the flow, and disturbances upstream of the
ridge are simply convected through the ridge. Because there
is no contact line in steady-state coating flow over surfaces
with topographical texture, minimal transient amplification
occurs.

The linear stability of the ridges that form in steady flow
over topography is also expected because, in contrast to
spreading films, there are no closed streamlines and therefore
no recirculating flow. Unless the capillary ridge has ex-
tremely high curvature such that the Rayleigh instability may
be important �in which case the assumptions leading to the
lubrication approximation may not hold�, a stationary capil-
lary ridge induced by topographical features should be
stable. The motion of the contact line associated with the
capillary ridge in coating flows �or in dewetting�, and not
simply the presence of the capillary ridge, is necessary for
the development of the well-known fingering instability. In
these driven spreading films, disturbances to the capillary
ridge are convected along with the film and therefore remain
localized at the capillary ridge as they grow or decay. For the
stationary capillary ridges that form in flow over topographi-
cal features, disturbances of low wavenumbers do not local-
ize at the ridge but are instead convected through it by the
flow. Disturbances of higher wavenumbers �for which the
discrete spectrum exists�, which do localize near the capil-
lary ridge, are highly oscillatory in the transverse direction
and hence rapidly damped by surface tension.

VII. CONCLUSION

Although the formation of a capillary ridge at the mov-
ing front is linked to the development of a fingering instabil-
ity in coating flows over flat surfaces, the stationary capillary
ridges that form in response to topographical features are
stable to transverse perturbations. The stability of both types
of capillary ridges can instead be inferred from the stream-
lines of the flow. The existence of closed streamlines in the
reference frame that renders a capillary ridge stationary,
which indicates the presence of recirculation, is associated
with the instability of the ridge. The lack of closed, recircu-
lating streamlines beneath capillary ridges that are induced
by topographical features is directly linked to the linear sta-
bility of the ridges. Furthermore, regardless of the amplitude
or steepness of the topographical feature, minimal transient
amplification of perturbations is found to occur, indicating
that the linear stability predictions for noninertial coating
flows over topography should be physically determinant.
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