Skip to main content
An Analysis of the Practical DPG Method
Mathematics of Computation
  • Jay Gopalakrishnan, Portland State University
  • Weifeng Qiu, University of Minnesota - Twin Cities
Document Type
Publication Date
  • Polynomials,
  • Mathematical statistics,
  • Instrumental variables (Statistics)

We give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree p on each mesh element. Earlier works showed that there is a "trial-to-test" operator T, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator T is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply T. In practical computations, T is approximated using polynomials of some degree r > p on each mesh element. We show that this approximation maintains optimal convergence rates, provided that r p + N, where N is the space dimension (two or more), for the Laplace equation. We also prove a similar result for the DPG method for linear elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also included.


This is the author’s version of a work that was accepted for publication. First published in Mathematics of Computation in Vol 83, No 286, published by the American Mathematical Society.

Persistent Identifier
Citation Information
Jay Gopalakrishnan and Weifeng Qiu. "An Analysis of the Practical DPG Method" Mathematics of Computation (2014)
Available at: