Extraction of Dual-band Antenna Response from UWB Based on Current Distribution Analysis

Mahmood T. Yassen, Department of Electrical Engineering, University of Technology, Iraq
Jawad K. Ali, Department of Electrical Engineering, University of Technology, Iraq
Mohammed R. Hussan, Department of Electrical Engineering, University of Technology, Iraq
Ali J. Salim, Department of Electrical Engineering, University of Technology, Iraq
Hussam Alsaedi, Department of Electrical Engineering, University of Technology, Iraq

Available at: https://works.bepress.com/jawad_ali/68/
Extraction of Dual-band Antenna Response from UWB Based on Current Distribution Analysis

March 12, 2016
Extraction of Dual-band Antenna Response from UWB Based on Current Distribution Analysis

Microwave Research Group, Department of Electrical Engineering, University of Technology, Iraq

Abstract- In this report, a new design technique of printed dual-band monopole antenna has been introduced. The design proposed is significantly based on the ultra-wide band (UWB) printed monopole antenna structure. The presented antennas have been modeled using a substrate having 1.6 mm thickness and a relative dielectric constant of 4.6 and have been fed with a 50 Ohm coplanar waveguide (CPW) transmission line. Modeling and performance evaluation of the antennas presented in this report have been carried out using the commercially available Computer Simulation Technique (CST) EM simulator. Furthermore, it has been found that applying the fractal geometry on the radiating element, results in an enhanced resonance of the dual band antenna and a better coupling of the obtained resonating bands.

1. INTRODUCTION
The increasing range of wireless telecommunication services and related applications are drawing the attention of the design of dual-band and small antennas. The telecom operators and equipment manufacturers can produce a variety of communication systems, like cellular communications, global positioning, satellite communications, and others. Each of these systems operates in several frequency bands. To serve the users, each system needs to have an antenna that has to work in the frequency band employed for the particular system. In the past, the tendency had used one antenna for each system, but this solution is inefficient regarding space usage, and it is an expensive one. The variety of communication systems suggests that there is a need for dual-band or multiband antennas. There are quite a few techniques currently available to achieve dual-band operation with printed and microstrip antennas. We can divide these techniques into three design categories.

The first category is a single patch design; this design category is considered the simplest and is widely used in the field of dual-band microstrip antennas. Single patch design can be subdivided into two types; the first type involves the use of the first resonance of the two orthogonal dimensions of the rectangular patch [1]. In this case, the frequency ratio is approximately equal to the ratio of the two orthogonal sides of the patch. The obvious limitation of this approach is that the two different frequencies excite two orthogonal polarizations. However, this simple method is very useful in low–cost short–range applications where polarization requirements are not pressing.

The second type of design is to introduce a reactive loading to a single patch, including capacitors or varactors [2, 3], notches [4], pin diode [5], stubs [6, 7]. And slots are also used, which are either external slots [8-12], or embedded slots [13-15]. By these reactive-loading approaches, one can modify the resonant mode of the patch, so that the radiation pattern of the higher order mode could be similar to that of the fundamental mode.
The dual-band operation can also be achieved using two or more radiating elements on the same substrate, each of them supporting high currents and radiation at the resonance as the second design category [16-18]. This category also includes multi-layer stacked patches on a multi-substrate that can use patches of various shapes [16]. These antennas operate with the same polarization at the two frequencies, as well as with a dual polarization. The same multilayer structures can also be used to broaden the bandwidth of a single band antenna when the two frequencies are forced to be closely-spaced.

The third category involves the use of fractal geometry in the design of dual-band antennas. The properties of fractal geometry permit the dual-band behavior to be achieved with fractal shaped antenna structures. Space-filling [19-21] property of fractal geometry could be used for miniaturizing antenna size and also for improving the response of dual-band antenna. Their property of being self-similarity [22-29] in the geometry leads to having dual-band antennas which have a large number of non-harmonic resonant frequencies. Fractal antennas have improved impedance and voltage standing wave ratio (VSWR) performance on a reduced physical area when compared to non-fractal Euclidean geometries.

In this report, a new design technique for the printed dual-band antenna is proposed. In this technique, the dual-band resonant behavior is to be extracted from the UWB response. The current distributions on the surface of the UWB antenna have to be investigated at different frequencies to show the contributions of the antenna parts in the resulting resonances. Accordingly, the dual-band resonant behavior can be extracted by modifying the antenna structure to enhance the currents at the required resonant frequencies. Furthermore, the philosophy of the proposed technique relies on the fact that the resonant behavior of any UWB antenna is composed of a vast number of resonant bands coupled together to form the resulting response. These resonant bands have been attributed to the different parts of the antenna structure. This can be monitored by examining the current distributions on the surface of antenna structure at these bands. The dual-band behavior of the antenna can be extracted from UWB one through the modifications on the different parts of the antenna structure with the aid of the related current distribution.

2. THE SQUARE PRINTED MONOPOLE UWB ANTENNA

Since the U.S. Federal Communications Commission (FCC) announced the use of the ultra-wideband (UWB) range, i.e. (3.1-10.6) GHz for commercial purposes, academic and industrial research become dramatically increased in this technology. Two important techniques for antenna engineering design are bandwidth enhancement along with antenna miniaturization.

Recently, many researchers have proposed different techniques to design compact size antennas along with wide-bandwidth performance to satisfy the resonance of UWB for several applications.

2.1 The Reference UWB Antenna Structure

The geometry of the proposed square printed monopole UWB antenna is shown in Figure (1). Figure (1) displays the front view of the structure which contains the radiator, and the coplanar waveguide (CPW) feed technique. The total size of the proposed antenna including the substrate is (43 × 40) mm², which has been supposed to be printed on FR4 glass epoxy substrate of thickness 1.6 mm, and relative permittivity of 4.6.

The radiator is in the form of a square patch having the dimension of (Wp × Lp) and excited using a (50) Ω coplanar waveguide (CPW) feed technique. The dimension of the feed line is (Wf × Lf) and the gap between the feed line and the ground plane is (g1), whereas the gap between the ground plane and the radiator is (g2). Slots are cut from the upper and lower corners of the patch in a stepped manner with the dimensions Wst1 × Lst1,
The dimension of the ground plane is (\(W_{gp} \times L_{gp}\)) at both sides of the feed line. The final values of the optimum parameters are indexed in Table (1).

![Figure 1: The proposed printed monopole UWB antenna.](image)

Table (1): Details of the proposed antenna's parameters as labeled in Figure (1)

<table>
<thead>
<tr>
<th>Antenna Components</th>
<th>Symbols and their values of the proposed antenna in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiator</td>
<td>(W_p = 22, ; L_p = 22)</td>
</tr>
<tr>
<td>Upper Steps</td>
<td>(Wst1 = 2, ; Lst1 = 2, ; Wst2 = 2, ; Lst2 = 2)</td>
</tr>
<tr>
<td>Lower Steps</td>
<td>(Wst3 = 4, ; Lst3 = 3)</td>
</tr>
<tr>
<td>Feed Line</td>
<td>CPW, (Wf = 4.2, ; Lf = 10.79, ; g1=0.66, ; g2=1.29)</td>
</tr>
<tr>
<td>Ground plane</td>
<td>(W_{gp} = 17.24, ; L_{gp} = 9.5)</td>
</tr>
<tr>
<td>Substrate</td>
<td>(W_{sub} = 40, ; L_{sub} = 43, ; h=1.6)</td>
</tr>
</tbody>
</table>

2.2 The Reference UWB Antenna Design

Observing the influence of the various parameters on the antenna performance, it has been found that the dominant factor in the proposed square printed monopole UWB antenna is the patch length (\(L_p\)) in terms of the guided wavelength \(\lambda_g\).

\[
\lambda_g = \frac{\lambda_0}{\sqrt{\varepsilon_{reff}}}
\]

(1)

where \(\varepsilon_{reff}\) is the effective relative dielectric constant, a value for the effective relative dielectric constant \(\varepsilon_{reff}\), with a feed line width, \(Wf\) to the substrate height ratio \(Wf/h \geq 1\), by means of:
\[
\varepsilon_{\text{reff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(\frac{1}{\sqrt{1 + 12 h/W_f}} \right)
\]

(2)

Then the lower resonant frequency, \(f_L\), relative to the radiating element length \(L_p\) is determined by:

\[
f_L \approx \frac{C_0}{2(L_p + \Delta L)\sqrt{\varepsilon_{\text{reff}}}}
\]

(3)

where, \(C_0\) is the speed of light in free space, \(\Delta L\) is the incremental length which accounts for the fringing of the field at respective edges:

\[
\Delta L \approx W_{st1} + W_{st3}
\]

(4)

2.3 Performance Evaluation of the Modeled UWB Antenna

![Simulated return loss of the proposed printed monopole UWB antenna.](image)

Figure 2: Simulated return loss of the proposed printed monopole UWB antenna.

Simulation results of the proposed printed monopole UWB antenna have been shown in Figures (2) and (3). Figure (2) shows the S\(_{11}\) response of this antenna with respect to 50 \(\Omega\) transmission, in a simulation swept frequency range from (1 to 11) GHz. In this frequency range, the proposed antenna exhibits good UWB characteristics with a wide operating range of (2.8 to 10.65) GHz and the lower resonance frequency (2.8 GHz) is determined by the square patch length \(L_p\) and governed by the Equation (3). The first, second, third and fourth pole frequencies are (3.77 GHz, 5.82 GHz, 7.93 GHz and 9.74 GHz), at which the value of S\(_{11}\) are (-37.41 dB, -22.3 dB, -18.3 dB, and -30.94 dB) respectively. Due to these pole frequencies the antenna exhibits an UWB response. As observed from Figure (2), the value of S\(_{11}\) is well below -10 dB throughout the UWB frequency band.
Figure 3: Simulated current distributions on the surface of the proposed UWB antenna at (a) 2.8 GHz, (b) 3.77 GHz, (c) 5.82 GHz, (d) 7.93 GHz, (e) 9.74 GHz, and (f) 10.65 GHz.

The plots of current distribution of the proposed UWB antenna at different resonance frequencies is shown in Figure (3). Figures 3(a) and 3(b) show the current distribution at the lower resonance frequency (2.8) GHz and the first pole frequency (3.77) GHz; it has been clearly depicted the current concentration at the length sides of the radiator with the lower steps in the radiation at these frequencies. In Figure (3 (c) and (d)), it can be seen that the upper steps together with the lower steps and the length sides of the radiator have direct effects on the
radiation of the second and third pole of resonance frequencies (5.82, and 7.93) GHz respectively. At the fourth pole of resonance frequency (9.74) GHz and the upper resonance frequency (10.65) GHz, the strong resonant current is exciting the lower width and the lower steps of the radiator. The current is also concentrated at the upper width of the ground plane and at the internal lengths around the feed line with the mainly flowing of it along the feed line at all the resonance frequencies.

2.4 Effects of Steps on the Resonance of the Proposed UWB Antenna

The impedance bandwidth is the most important characteristics of the UWB antenna, and the good UWB antenna should be capable of operating over the bandwidth that assigned by the FCC. Many techniques are used to increase the bandwidth of UWB antenna and slots are considered the most popular technique for this purpose. In the proposed antenna slots in the form of a square and rectangular cut are introduced in the upper and lower corners of the patch in stepped manner as in [29], to provide wide band matching of the transmission system with the radiator. Figure (4) illustrates the effects of these steps, and it is observed that the insertion of these steps is the most compelling manner for getting the broad bandwidth as well as proper impedance matching to maximize the antenna radiation efficiency.

![Figure 4: Effects of steps on the resonance of the proposed UWB antenna.](image)

3. MODIFICATIONS ON THE UWB ANTENNA ELEMENTS

Basing on surface current distribution and resonance of the proposed UWB antenna, there are two main modifications procedures must be contributed to extract dual band resonance behavior from the obtained UWB resonance in square printed monopole antenna. The first is the patch modification and the second is the ground plane and feed line modification with the same substrate characteristics and feeding technique that used in the proposed UWB antenna. The idea of these modifications is to remove any regions from the patch and ground plane that are responsible for making resonance in the upper frequencies in UWB resonance and also to increase the current in the regions that are responsible for making resonance in the lower frequencies in UWB resonance.
3.1 Modifications on the Antenna Radiating Element
The antenna patch modification can be explained by Figure (5). The first process is the recovery of the steps to remove their effect of broadening the resonance, so Figure (4) shows that there are two bands with $S11 \leq -10 \text{ dB}$ after recovering steps. The second process is the increasing of the patch dimensions to minimize the lower resonance frequency. Since the middle area of the patch has no relation to the lower resonance frequency as shown in Figure (3). The third process is to remove the square area from the middle of the patch to increase the amount of current in the important regions of the lower resonance frequency.

3.2 Modifications on Antenna Ground Plane and Feed Line
Figure (6) simplifies the antenna ground plane and feed line modification. The purpose of the decreasing process in feed line width is to increase the impedance matching for the obtained resonating bands after patch modification, and the purpose of the ground plane area reduction is to enhance the bandwidth of the high resonance band. As shown in Figure 3 (c) a large amount of current concentrated at the upper width of the ground plane and the internal lengths around the feed line. Therefore, the aim of the notch insertion to the ground plane is to increase the total current in this region, and this will increase the resonance frequency generation.

4. THE RESULTING DUAL-BAND ANTENNA
The resulting dual band antenna by using the modifying processes on the proposed UWB antenna should maintain the reasonable bandwidth, gain, and the radiation characteristics to satisfy the wireless communication applications. The tools of the CST software are used to examine the resulting antenna characteristics. The details of the antenna structure, antenna design, and performance evaluation are explained in the following items.
4.1 The Antenna Structure

The geometry of the resulting dual band antenna as front view is shown in Figure (7). The radiator is in the form of a square ring having an external dimension (Wp × Lp) and internal (slot) dimension (Ws × Ls) is excited using the same feed technique of the proposed UWB antenna. Two rectangular slots with a dimension of (Wno × Lno) have been cut from each upper corners of the ground plane. Table (2) summarizes the modified dimensions of the resulting antenna parameters as labeled in Figure (7).
Table (2): Details of the modified parameters of the resulting dual band antenna as labeled in Figure 7.

<table>
<thead>
<tr>
<th>Antenna Components</th>
<th>Symbols and their values of the proposed antenna in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiator</td>
<td>(W_p = 24, \quad L_p = 24)</td>
</tr>
<tr>
<td>Inner Square Slot</td>
<td>(W_s = 12, \quad L_s = 12)</td>
</tr>
<tr>
<td>Feed Line</td>
<td>(\text{CPW, } W_f = 3, \quad L_f = 10.79, \quad g_1 = 0.66, \quad g_2 = 1.59)</td>
</tr>
<tr>
<td>Ground plane</td>
<td>(W_{gp} = 15.34, \quad L_{gp} = 9.2)</td>
</tr>
<tr>
<td>Ground Plane Notch</td>
<td>(W_{no} = 7, \quad L_{no} = 5)</td>
</tr>
<tr>
<td>Substrate</td>
<td>(W_{sub} = 40, \quad L_{sub} = 43, \quad h = 1.6)</td>
</tr>
</tbody>
</table>

4.2 The Resulting Antenna Design

The resulting square printed monopole dual band antenna has been designed to serve the wireless communication applications. After modification processes and dimensions scaling, it has been found that the internal slot length (\(L_s \)) and about of (77%) from the external length (\(L_p \)) of the radiator have the direct effect on the resonance of the lower frequency as an effective length (\(L_{eff} \)) in terms of the guided wavelength \(\lambda_g \). Then the effective length \(L_{eff} \) can be formulated by:

\[
L_{eff} = L_s + 0.77L_p
\]

(5)

The lower resonant frequency, \((f_{L1}) \), relative to the radiating elements length (effective length) is determined by:

\[
f_{L1} \approx \frac{C_0}{2L_{eff} \sqrt{\varepsilon_{eff}}}
\]

(6)

where, \(C_0 \) is the speed of light in free space.

4.3 The Resulting Antenna Performance Evaluation

Simulation results of the resulting square printed monopole dual band antenna have been shown in Figures (8) to (12). Figure (8) shows the return loss (RL) response of the resulting antenna with respect to 50 \(\Omega \) transmission, in a simulation swept frequency range from 1 to 10 GHz. The dual-band behavior of this antenna is quite clear. In this frequency range, there are two resonating frequency bands (for \(S_{11} < -10 \) dB): the lower resonant band from 2.64 – 3.55 GHz with center frequency of 3.08 GHz for (-14.8 dB \(S_{11} \)), and the upper resonant band from 5.55 – 6.85 GHz with center frequency of 5.98 GHz for (-29.97 dB \(S_{11} \)), with corresponding bandwidths of 0.91 and 1.3 GHz respectively. The frequency ratio \((f_{o1}/f_{o2}) \) of this antenna is 0.52.
The surface current distribution has been studied using simulation tool and illustrated in Figure (9). Figure 9(a) shows the surface current of the resulting antenna at the center frequency 3.08 GHz of the lower resonant band, the current is concentrated at the internal slot lengths, a part of external lengths, and at the lower width of the radiator. Figure 9(b) shows the surface current of the resulting antenna at the center frequency 5.98 GHz of the upper resonant band, the current is concentrated at the two upper internal corners, and the lower width of the radiator. The current has mainly flowed along the feed line at both mentioned frequencies.

Figure 10 shows the simulated antenna far-field radiation patterns for the total electric field in the x-y plane, the x-z plane, and the y-z plane at the center frequencies of the two bands. Figure 10(a) depicts the radiation patterns at 3.08 GHz. In the x-y plane (θ = 90°), the main lobe magnitude is 16.1 dBV/m, the main lobe direction is (167°), and the angular width (3 dB) is (90.4°). In the x-z plane (φ = 0°), the main lobe magnitude is 17.4 dBV/m, and the main lobe direction is (180°). Whereas in the y-z plane (φ = 90°), the main lobe magnitude is 17.5 dBV/m, the main lobe direction is (173°), and the angular width (3 dB) is (79°). Figure 10(b) presents the radiation patterns at 5.98 GHz. In the x-y plane (θ = 90°), the main lobe magnitude is 20 dBV/m, the main lobe
direction is (126°), the angular width (3 dB) is (38.5°), and the side lobe level is -4.2 dB. In the x-z plane (φ = 0°), the main lobe magnitude is 10 dBV/m, the main lobe direction is (138°), and the angular width (3 dB) is (62.1°). Whereas in the y-z plane (φ = 90°), the main lobe magnitude is 16.5 dBV/m, the main lobe direction is (142°), the angular width (3 dB) is (44.4°), and the side lobe level is -1.7 dB.

Figure 10: Simulated far-field radiation patterns for the total electric field of the resulting square printed monopole dual band antenna at (a) 3.08 GHz, and (b) 5.98 GHz.

As far as the radiation properties are concerned, Figure 11 shows the simulated three-dimensional directivity radiation patterns of the resulting antenna. The directivity at 3.08 GHz the center frequency of lower band is 2.66 dBi as shown in Figure 11(a), whereas the directivity at 5.98 GHz the center frequency of upper band is 5.27 dBi as shown in Figure 11(b).
Figure 11: Simulated 3D directivity of the resulting square printed monopole dual band antenna at (a) 3.08 GHz, and (b) 5.98 GHz.

The peak gain values in the two bands have been evaluated, as shown in Figure 12. In the lower frequency band, the peak gain plotted in Figure 12(a) is as large as 1.59 dBi. The gain versus frequency, for the upper band, is plotted in Figure 12(b), where the maximum gain is found to be of about 6.14 dBi.

Figure 12: Simulated peak gain of the resulting square printed monopole dual band antenna at (a) lower resonating band, and (b) upper resonating band.

5. EMPLOYING FRACTAL GEOMETRY IN THE RESULTING DUAL- BAND ANTENNA
The Minkowski space-filling fractal geometry of 1st, 2nd, and 3rd iteration has been used to improve the resonance of the resulting dual band antenna. Figure 13 shows the generation process of the Minkowski space-filling fractal structure that will be applied to the resulting antenna structure. The straight line in Figure 13(a) called the initiator is as Euclidean line, the middle third of the initiator will be replaced by the generator which each segment of it is having length equal to third the length of the initiator as shown at the bottom of Figure 13. Each of the five straight segments of the generating structure is shown in Figure 13(b) is replaced with the generator, and so on. This iterative generating procedure continues for an infinite number of times. The final result is a curve with an infinitely intricate underlying structure that is not differentiable at any point.

Figure 13: The generation process of the Minkowski space-filling fractal structure; (a) the initiator, (b) the 1st iteration, (c) the 2nd iteration, and (d) the 3rd iteration

Figure (9) and Equations (5, and 6) imply that the internal slot length (Ls) and the external length (Lp) of the radiator have a direct effect on the lower resonant frequency. The fractal structure is inserted to the internal slot length (Ls) to increase the electrical current path at the regions between the internal length and external length at both sides of the radiator. Figure (14) shows the structure of the resulting square printed monopole dual band antenna as taken from the environment of the Computer Simulation Technique (CST) after applying the Minkowski space-filling fractal for; (a) the first iteration, (b) the second iteration, and (c) the third iteration to both the internal slot lengths (Ls1 and Ls2). The center of the modeled antenna is located at the point (0, 0, 0) with respect to the local coordinate system (x, y, z). While the width of it is in the direction of x-axis, the length of it is in the direction of y-axis, and the thickness of it, is in the direction of the z-axis. Because the Minkowski space-filling fractal structure is applied to the internal length of both sides of the radiator in the resulting dual band antenna as shown in Figure 14, therefore the internal length only would be affected, and all external dimensions of the antenna remained at the same values.
Figure 14: The proposed fractal shaped square ring dual-band antenna with respect to the local coordinate system for; (a) the 1st iteration, (b) the 2nd iteration, and (c) the 3rd iteration

The first iteration consists of 5 segments, and the second iteration has 25 segments, and so on. The length enclosed by any fractal structure at the nth iteration n, L_n is:

$$L_n = L_{n-1} + \frac{\sqrt{L_{n-1}}}{n} \quad \text{for } n \geq 1$$

(7)

Where, L_{n-1} is the previous internal length (Ls) with the fractal effect. Then the effective length (L_{eff}) would be modified to:

$$L_{eff} = L_n + 0.77L_p$$

(8)

The presence of the irregular radiating edges in the Minkowski space-filling fractal that employed in the antenna structure is a way to increase the surface current path length compared to that of the conventional square slot antenna, resulting in a reduced resonant frequency or a reduction in the antenna size if the design frequency is to be maintained.

The effects of the Minkowski space-filling fractal structure at 1st, 2nd, and 3rd iteration on the return Loss of the
resulting square printed Monopole dual band antenna is shown in Figure (15).

![Figure (15): Effects of the Minkowski space-filling fractal structure at 1st, 2nd, and 3rd iteration on the return loss of the resulting square printed monopole dual-band antenna.]

Figure 15 shows the return loss (RL) response of the four resulting antennas in a swept frequency range from 1 to 10 GHz. In this frequency range, the resulting dual-band monopole antenna, without fractal structure, exhibits lower resonant band from (2.64 – 3.55) GHz covers 2.5/3.5 GHz WIMAX (Worldwide Interoperability for Microwave Access), and upper resonant band from (5.55 – 6.85) GHz covers 5.8 GHz WLAN (Wireless Local Area Network).

In the resulting square printed monopole dual band antenna with 1st iteration Minkowski space-filling fractal structure for (S11 ≤ -10 dB), the lower resonant band from (2.46 – 3.36) GHz covers 2.5 GHz WIMAX, and the upper resonant band from (5.44 – 6.92) GHz covers 5.5 GHz WIMAX and 5.8 GHz WLAN.

As for the resulting square printed monopole dual band antenna with 2nd iteration Minkowski space-filling fractal structure for (S11 ≤ -10 dB), the lower resonant band from (2.39 – 3.2) GHz covers 2.5 WIMAX, (2.4 – 2.484) GHz WLAN, (2.4 – 2.484) GHz Bluetooth, (2.4 – 2.484) GHz ISM (Industrial Scientific Medical), and 2.45 GHz RFID (Radio Frequency Identification), and the upper resonant band from (5.33 – 6.97) GHz covers 5.5 GHz WIMAX, and 5.8 GHz WLAN.

Whereas, the resulting square printed monopole dual band antenna with 3rd iteration Minkowski space-filling fractal structure for (S11 ≤ -10 dB), the lower resonant band from (2.35 – 3.13) GHz, and the upper resonant band from (5.27 – 6.97) GHz. That mean the two bands of this antenna cover all WiFi (Wireless Fidelity) applications for lower and upper WLAN, 2.5/5.5 GHz WIMAX, (2.4 – 2.484) GHz Bluetooth, (2.4 – 2.484) GHz ISM, and 2.45 GHz RFID

6. CONCLUSIONS
The extraction of dual-band resonant behavior from the UWB response, using a modification process with the aid of current distribution analysis on the surface of UWB antenna, has been successfully carried out in this report. In addition, the radiating element of the resulting antenna has been further modified by applying fractal geometry to improve the resonance of the resulting antenna dual-band response. The presented antennas have been analyzed using a method of finite integration technique simulator, CST MICROWAVE STUDIO. The input reflection coefficient (S11) responses of the presented antennas reveal the dual-band behavior which makes all of them suitable for wireless communication applications. In spite of the compact size, the designed antenna demonstrates an average gain, close to omnidirectional radiation pattern throughout the two obtained bandwidths.
The proposed technique can be extended to extract the dual-band antenna response from the multiband ones such that neither filtering nor changing the antenna dimensions is required.

REFERENCES

