Skip to main content
Giant Magnetostriction in Annealed Co1-xFex Thin-Films
Nature Communications
  • Dwight Hunter
  • Will Osborn
  • Ke Wang
  • Nataliya Kazantseva
  • Jason R. Hattrick-Simpers, University of South Carolina - Columbia
  • Richard Suchoski
  • Ryota Takahashi
  • Marcus L. Young
  • Apurva Mehta
  • Leonid A. Bendersky
  • Same E. Lofland
  • Manfred Wuttig
  • Ichiro Takeuchi
Publication Date
Document Type
Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses of Co1−xFex films indicate that maximal magnetostriction occurs at compositions near the (fcc+bcc)/bcc phase boundary and originates from precipitation of an equilibrium Co-rich fcc phase embedded in a Fe-rich bcc matrix. The results indicate that the recently proposed heterogeneous magnetostriction mechanism can be used to guide exploration of compounds with unusual magnetoelastic properties.
Citation Information
Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, et al.. "Giant Magnetostriction in Annealed Co1-xFex Thin-Films" Nature Communications Vol. 2 (2011) p. #518
Available at: