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Abstract

We give a concise geometric development of Poincaré gauge theory in any dimension and signature,
and trace the difference between the canonical and Belinfante-Rosenfield energy tensors to different
choices of independent variables. Then we give extensive attention to sources for torsion, finding that
symmetric kinetic terms for non-Yang-Mills bosonic fields of arbitrary rank drive torsion. Our detailed
discussion of spin-3/2 Rarita-Schwinger fields shows that they source all independent parts of the torsion.
We develop systematic notation for spin-(2k+1)/2 fields and find the spin tensor for arbitrary k in n >
2k+1 dimensions. For k& > 0 there is a novel direct coupling between torsion and spinor fields.
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1 Introduction

1.1 General relavity as a gauge theory

The Standard Model emerged as a gauge theory over a period of half a century. Early developments [I]
coupling the electromagnetic interaction to quantized matter as U (1) gauge theory evolved into to our
current understanding of the electroweak and strong interactions as arising from local symmetries. Gauge
theories’ success motivated the later but parallel development of general relativity as a Poincaré gauge theory.

Utiyama [2] gave the first treatment of general relativity as a gauge theory, choosing the Lorentz group
as the local symmetry. Later, Sciama [3] developed the Lorentz gauge theory further, while Kibble [4]
generalized to the full Poincaré group by identifying translational gauge fields with the co-tangent basis.
With the use of Cartan’s quotient method for constructing homogeneous manifolds and generalizing them
to curved geometries [5, 6], Ne’eman and Regge [7, 8] applied the gauging to supergravity. These methods
still provide a powerful tool for the study of general relativity within broader symmeties. Shortly afterward
Ivanov and Niederle used the techniques to study gravity theories based on the Poincaré, de Sitter, anti-de
Sitter, and conformal groups|9, [10].

While a number of symmetry groups lead to general relativity or equivalent gravity theories with addi-
tional structure [9, [I0] [IT], Poincaré gauge theory employs the smallest group yielding the essential features
and therefore enjoys the most consistent attention as a gauge theory of gravity. Yet even this modest
extention of general relativity introduces new features, most notably the torsion.

Our version of Poincaré gauging using Cartan’s methods is described in Sections (2]) and (B]). The principle
fields are the curvature and torsion 2-forms, given in terms of the solder form and spin connection. The
inclusion of torsion produces a Riemann-Cartan geometry rather than Riemannian.

To reproduce general relativity from Poincaré gauging in Riemannian geometry we can disregard the
torsion and vary only the metric. The resulting Riemannian geometry is known to be consistent and metric
variation leads to a symmetric energy tensor. Exploration of the unconstrained Riemann-Cartan geometry
is the purview of ECSK theory and its generalizations to dynamical torsion.

1.2 Palatini variation and ECSK

The original formulation of general relativity assumed the metric compatible Christoffel connection, with
the metric as the independent variable so the Einstein-Hilbert action is a functional of the metric g alone
Sem lg]. Tt was soon shown by Palatini [12] that if the action is regarded as a functional of the metric and
an arbitrary symmetric connection Sgg [¢g,], we find the usual field equation along with the condition of
metric compatibility. With this Palatini variation, the use of the Christoffel connection is derived. However,
the assumption of a symmetric connection rules out any role for torsion.

In a gravitational gauge theory built from Poincaré symmetry the connection forms are dual to the gen-
erators of the original symmetry and it is natural to vary all of them independently. This means varying
both the solder form e® and the spin connection w® , in the style of Palatini. When the (e, w® ) variation
is carried out with vanishing torsion the usual Einstein theory of gravity results. However, when the full
Riemann-Cartan geometry including torsion is allowed, the spin tensor of matter sources will lead to nonva-
nishing torsion in the same way that the energy tensor drives curvature. In this sense Poincaré gauge theory
can make preditions beyond those of general relativity.

The development of Riemann-Cartan geometry using the Einstein-Hilbert action is now known as the
Einstein-Cartan-Sciama-Kibble (ECSK) model of gravity. Its long history begins with Cartan’s generalization
of Riemannian geometry [I3], 14, 15 16]. A few years later Einstein used torsionful geometry to discuss
teleparallel model [I7] though this theory is not cast in the same terms as general relativity. Originally,
the evolving ECSK theory was the study of the metric variation of the Einstein-Hilbert action Sgg [g] in
a Riemann-Cartan geometry. The gauge theory approach was more fully developed starting with Utiyama
and continuing as outlined above [2] [3, 41 [7, 8, [9, [10]. A detailed review is given in [I8]. With the advent
of modern gauge theory it has become natural to vary both metric and connection Sgy [g, '] or both solder
form and spin connection Sgy [e,w].



Basing gravity theory on the Einstein-Hilbert action with source fields, torsion is found to be non-
propagating and vanishing away from material sources. This is perhaps a benefit, since the geometric
understanding of torsion implies non-integrability of functions around closed curves, in much the same way
as vectors are rotated under parallel transport around loops in Riemannian geometry. Since there is no
experimental evidence in favor of torsion, and limits on torsion coupling to matter are strong (see Donald
E. Nevilld] [19]) much study of ECSK has focussed on showing that torsion does not persist in physical
situations (e.g., [20]). It is natural that the seemingly pathological non-integrability, the anomolous effect
on angular momentum, and in general the extreme success of general relativity should have this effect.
Nonetheless, the study of ECSK theory has drawn considerable attention over the last century, including
generalizations to propagating torsion [19] 211, 20, 22| 23]. The latter have been criticized as incapable of
simultaneous unitarity and normalizability [24].

On the other hand, sometimes a deeper understanding of geometry and general relativity is to be gained
by fully exploring nearby theories. This is the goal of the present work: to describe broad classes of sources
for torsion in Poincaré gauge theory. Our results hold in any dimension n and any signature (p,q). The
exercise includes some important physical predictions, since some of the sources we discuss, notably the
spin—% Rarita-Schwinger field, are predicted by string and other supergravity theories.

In the next Section we present the basic properties of Poincaré gauge theory using Cartan methods.
We include the structure equations, Bianchi identities, the solution for the spin connection in terms of the
compatible connection and the contorsion, and the decomposition of the torsion into invariant parts. These
results are geometrrical.

The ECSK action is introduced in Section (3)), where we discuss two distinct methods of variation. For the
first method the action is taken as a functional of the solder form and the full spin connection, S [e%,w® ], in
the spirit of Palatini but allowing torsion. The second method uses the decomposition of the spin connection
into a compatible piece and the contorsion tensor w® , = a®, 4+ C*,. This allows us to respect the Lorentz
fiber structure of the bundle by varying only the Lorentz tensors—the solder form and the contorsion, while
treating the compatible part of the spin connection as a functional of the solder form a® , = a® , (e%).

The effect of generic matter fields is studied in Section (@), where the contrast between the two varia-
tional approaches of the previous Section become important: different choices of independent variables give
different energy tensors. We show that this leads to the difference between the canonical energy tensor and
the Belinfante-Rosenfield tensor. Additionally, we show that while the solder form variation leads to an
antisymmetric piece of the Einstein equation, Lorentz invariance restores symmetry.

The bulk of our investigation, presented in Section (), concerns the effects of various types of fundamental
fields on torsion. The exceptional cases of Klein-Gordon and Yang-Mills fields are treated first. The actions
for these fields do not depend on the spin connection and therefore do not provide sources for torsion.
Next, we study a class of bosonic fields of arbitrary spin with actions quadratic and symmetric in covariant
derivatives. Except for scalars, these drive torsion. In Subsection (.3]) we derive the well-known axial current
source for totally antisymmetric torsion arising from Dirac fields. We also check the effect of nonvanishing
spin tensor in the limit of general relativity where the torsion vanishes.

The effect of the less thoroughly studied Rarita-Schwinger field on torsion is examined in Subsection
(E4). While the axial source for Dirac fields arises from the anticommutator of a y-matrix with the spin
connection, the Rarita-Schwinger field couples through a similar anticommutator but with the product of
three ~-matrices. In addition, we find a new direct coupling of the spin—% field to torsion. Unlike the Dirac
field with only an axial current source, the Rarita-Schwinger field drives all three independent pieces of the
torsion. Except in dimensions 5,7 and 9, spin—% fields have enough degrees of freedom to drive all components
of the torsion independently.

Finally, we introduce new compact notation for spin—% spinor-valued p-form fields in Subsection (&l).
This enables us to write actions for arbitrary k£ and find the general form of the spin tensor. The physical
properties appear to echo those of the Rarita-Schwinger field.

L“The torsion must couple to spins with coupling constants much smaller than the electromagnetic fine-structure constant, or
the force between two macroscopic ferromagnets, due to torsion exchange, would be huge, far greater than the familiar magnetic
force due to photon exchange.”



We conclude with a brief summary of our results.

2 Poincare gauge theory

All results below hold in arbitrary dimension n = p + ¢ and signature s = p — ¢. The group we gauge is then
SO (p,q) or Spin (p,q) with the familiar spacetime case having p = 3,¢ = 1.

There are two stages to building the Poincaré gauge theory: First, we apply Cartan’s construction to
develop a fiber bundle and second, we specify an action functional.

The construction of the geometry is described in Section (). Briefly, we use structure constants of
Poincaré Lie algebra to write the Maurer-Cartan equations, a set of first order differential equations. These
equations are equivalent to the Lie algebra. Next, we form the quotient of the Poincaré group by its Lorentz
subgroup and the Lorentz equivalence classes (cosets) form a manifold. Defining a projection from the cosets
to this manifold gives a principal fiber bundle. The manifold is homogeneous and the fibers are Lorentz.
The final step is to change the connection forms to give horizontal curvatures and to (perhaps) change the
manifold.

2.1 Geometric relations of Riemann-Cartan geometry

By Poincaré gauge theory, we mean physical models based on the unrestricted Cartan gauge theory of the
Poincaré group. Starting with the generators M®, and P, of the Poincaré Lie algebra, we define 1-forms
w®, and et

(M€ g,w%) = 0"mpa — 6503
<Pa,eb> = &

a

The Maurer-Cartan equations for dual forms for any Lie algebra <G 4, wP > = 55 are given by do? =

—%CA BCJJB A @ where ¢ e are the structure constants. For the Poincaré group P this gives
d(:)a b — (:)C b /\ (:)a c
d&* = & rw*,

and we take the quotient by the Lorentz subgroup £ allows us to develop a principal fiber bundle with
Lorentz symmetry over a homogeneous n-dimensional manifold M),

By modifying the solder form and the spin connection 1-forms (é , b) — (e ,w? b) we introduce a
Poincaré covariant tensors with two Lorentz covariant components: the curvature R, and the torsion T®

b b

dwab = wcb/\wac+Rab (1)
de® = e’Aw?, +T° (2)

We require the R® , and T* to be horizontal,
a 1 a c d
1
T = §Tabceb A el (4)

thereby preserving the bundle structure. Integrability of the Cartan equations Eqs.( ) and (2] is insured by
d?w* » = 0 and d?e® = 0, which require the Bianchi identities,

DT = e’AR", (5)

DR, = 0 (6)



where the covariant exterior derivatives are given by

DRab = dRab+RCbAwaC_waARac
DT* = dT"+T°Aw®,

When the connection is assumed to be compatible with the metric, Egs.( )-(@) describe Riemann-Cartan
geometry in the Cartan formalism. Note that the Cartan-Riemann curvature, R® ,, differs from the Riemann
curvature R® ; by terms dependent on the torsion. When the torsion vanishes, T® = 0, the Riemann-Cartan
curvature R* , reduces to the Riemann curvature R® , and Eqs.(]) and (2) exactly reproduce the expressions
for the connection and curvature of a general Riemannian geometry. At the same time, Eqs. (@) and (6]) reduce
to the usual first and second Bianchi identities.

The orthonormal frame fields e® satisfy

<ea7eb> _ nab

In ECSK theory, the connection is assumed compatible with the Lorentz (or SO (p,q), Spin (p,q)) metric
n?. This implies antisymmetry of the spin connection.

0 = Dnaw
- dT]ab - 7’]cb"‘)C a 77(16"‘)C b
= - (wba + wab)

Antisymmetry together with Eq.(2]) fully determines the spin connection up to local Lorentz transformations.

These results are geometric; a physical model follows when we posit an action functional. The action may
depend on the bundle tensors e?, T¢, R“ , and the invariant tensors 74p and egqp.. 4. To this we may add action
functionals built from any field representations of the fiber symmetry group (Lorentz, SO (p, q) , Spin (p,q))—
scalars, spinors, vector fields, etc.

The relation between the Riemann-Cartan curvature R®, and the Riemann curvature R® , is developed
below.

From the known consistency of Riemannian geometry, we know we may set T® = (0 in the Cartan
equations of Riemann-Cartan geometry. However, this does not mean that a Poincaré theory of gravity
following from an action based on Poincaré symmetry leads to the same restriction. Vanishing torsion must
also be a satisfactory solution to the field equations, including sources.

We continue to develop geometric properties in the remainder of this Section. We first solve for the spin
connection in the presence of torsion. This allows us to express the Riemann-Cartan curvature in terms of
the torsion and Riemann curvature. For use in some subsequent calculations we also find these results in a
coordinate basis. We conclude the Section with the decomposition of the torsion into invariant subspaces
before moving on to the ECSK action in Section Bl

2.2 Solving for the connection

The structure equations, Eqs.(Il) and (2)), allow us to derive explicit forms for the connection and curvature.
Starting from the Cartan structure equation, Eq.(2]), write the spin connection as the sum of two terms

why=ay + 8%,
where a® , is defined to be the torsion-free connection, de® = e’ A a® - Then 8%, must satisfy
0 = e"AB", +T° (7)

To solve this the 1-form 3, must linear in the torsion and antisymmetric. These conditions dictate the
ansatz

/Gab = (lecTcab + be® (Tacb - Tbca)



for some constants a,b. Substitution into Eq.([@) quickly leads to a = b = %, and the spin connection is

wty, = aab+%(Tc Cot T — Ty )€
= o', +C% (8)
where C®, is the contorsion,
Cab:%(Tcab‘f'Tacb_Tbc ) e (9)

The decomposition of the connection is unique. Local Lorentz transformations transform a®, inhomoge-
neously in the familiar way while torsion and contorsion are tensors. The form of contorsion (@) in terms of
torsion is unique and invertible.

We may recover the torsion by wedging and contracting with e”.

c*,ned = T1°

Conversely, we can write the contorsion in terms of the torsion 2-form. First, write the contorsion as
3 C
Cab = §T[abc] + Tbac - Tabc €

Now convert the 2-form T’ and the 3-form e° A T, to 1-forms * (e A *T%) and *e® A e’ A * (e AT,)
respectively, leading to the somewhat daunting form

1
Cab — (_l)p * <ea/\ *Tb—eb/\ *Ta _ 5ea/\eb/\ * (ec/\TC)>

Clearly, for some calculations, the component notation is simpler.

The torsion now enters the curvature through the connection. Expanding the Cartan-Riemann curvature
of Eq.(d) using Eq.(8) then identifying the a-covariant derivative, DC®, = dC®,—C¢ ,Aa® . —a® , AC?
leads to

Rab = Rab+DCab_ch/\Cac (10)

This is the Riemann-Cartan curvature expressed in terms of the Riemann curvature and the contorsion.
Note that the a-covariant derivative is compatible with the solder form, De® = de® — e’ A a® , = 0.

Given Eq.(I0) for the Cartan-Riemann curvature in terms of the Riemannian curvature and connection,
we may also expand the generalized Bianchi identities of Eqs.(Bl) and (@). The first Bianchi becomes

AT+ TP A (@, +C*,) = e’ AR%, +e’ADC*, —e’AC°, A C",

Using De® = 0 and replacing C¢, A e’ = T¢ leads to the Riemannian Bianchi e? AR?®, = 0.
Similarly, expanding the derivative in the second Bianchi gives

OZDRab+RCb/\Cac_CCb/\Rac

Replacing R*, = R*, + DC®, — C¢, A C*_ throughout then using e’ A C¢, = T¢ and D2C%, =
Ce, AR, —C*_ AR°, leads to several cancellations and finally

DRa b - O

so that the Cartan-Riemann Bianchi identities hold if and only if the Riemann Bianchi identities hold.
The first Bianchi identity relates the triply antisymmetric part of the curvature tensor R* , to the exterior
derivative of the torsion. Expanding both sides of Eq.(#]), antisymmetrizing, then stripping the basis,

R bea + R cap + R gpe = DaT* o + DoT* .y + DT



Contracting ad and using R¢ _;,, = 0 (by the structure equation Eq.(I)) and the antisymmetry of the spin
connection) we have
Rcb - Rbc = Da yabc
where we define
yabc = Tabc - 5gT€ ec + 5:21T€ eb
For all n > 2 this is invertible, 7%, = F9 + —15 (6¢.7°,, — 0 7¢..). Then the antisymmetric part of the

n—2
Ricci-Cartan tensor is simply minus the divergence

Rab - Rba = _Dcycab (11)

Therefore the Ricci tensor of the Cartan-Riemann curvature acquires an antisymmetric part dependent on
derivatives of the torsion.

Because the curvature is a 2-form, and the spin connection is antisymmetric, the curvature satisfies
Raved = Rapcd) = Riabjed and there is still only one independent contraction.

2.2.1 Coordinate expressions

The solder form equation (2 may be solved algebraically for the either the spin connection or the general
linear connection. Here we solve for the general linear case. The combined components of the vanishing
2-form de® — e’ A w?, — T® = 0 must be symmetric

1
oue, “+e, by b+ §T“W = A® (12)

vp

where lower case Latin indices refer to the pseudo-orthonormal frames e® while lower case Greek indices
refer to a coordinate basis, dz*. We recognize Eq.(I2]) as a vanishing covariant derivative

a a b, a ax\o _
Due,* = 0ue,"+e, wy, —e, %7, =0

where 38 op = AP o — %T'BUH. Contracting Eq.(I2)) with Nac€p © we symmetrize on Sv. The spin connection
terms cancel and the derivatives combine into a single covariant derivative of the metric.

0= 6ugﬂu - g,@aza vp guaza Bu — Dugﬁu

We solve this familiar form of metric compatibility in the usual way by cycling indices then adding two
permutations and subtracting the third, but using ¥g,,, — Yg,, = T, to rearrange index order. Restoring
the usual index positions the result is

2 =T" s = C"py

wherewhere I'* , is the Christoffel connection and we recognize the contorsion tensor,

1
Cpvn = —Cupp = 5 (Tovu + Toup — Tusw)
The vanishing covariant derivative of the vielbein takes the form

_ a a b, .a amo a o
0="Dpe, = 0Oue, +e, Wy, —e T, te, Cw

2.3 Decompostion of the torsion
We identify well-known invariant pieces of the torsion. The torsion includes a totally antisymmetric piece

1 1
T = ge“/\Ta:§Tabce“/\eb/\ec (13)



with %n (n—1) (n — 2) degrees of freedom. Note that in 4 or 5 dimensions the dual of T is a lower rank
object.

* 1 aoc
T = ?T b eabcded
* _ 1 abc d e
T = wT Cabede€ N €
in particular giving the well-known axial vector in 4-dimensions. There is also a single vectorial contraction.
Tt = (=1)P~* (eb A ) (14)
Writing Eqs.(I3) and () as 2-forms
1
577“bT[bcd]ec net = (=1)73!* (e A *T)
e’ A (TC %) = (=1)Pe’A *(e“A*T,)

we may decompose the full torsion in n = p + ¢ dimensions as
1

n—1

T = 7%+ (—1)P e’ A *(e“ A *To) + (=1)?3!" (e* A *T) (15)

a n

where 7¢ is a traceless, mixed symmetry 2-form with N = % (n2 — 4) degrees of freedom. This remaining
piece may be further decomposed into symmetric 7(4p). and antisymmetric 7,4}, parts.
In components the decomposition is simply

a a 1 are arpe ae
T be — T bc+ m (6bT ec_(scT eb)+77 T[ebc] (16)

While the vector and pseudovector each have 4 degrees of freedom in 4-dimensions, the situation is very

(

2
different in higher dimensions. In general the torsion has a total of %_1) degrees of freedom. Therefore,
~ # of the total, the antisymmetric

while the trace contains only n degrees of freedom for a fraction ﬁ

part includes 3;n (n — 1) (n — 2) or roughly

n—2 1
3n
. . .. 2(n?—4 . . . .
The residual tensor 7% includes the remaining 3n7_) ~ 2. Thus, the antisymmetric part is a major
n(n—1) 3

contributor in higher dimensions.

3 Vacuum ECSK theory

The physical constent of the Einstein-Cartan-Sciama-Kibble theory enters through use of the Einstein-Hilbert
action in Riemann-Cartan geometry. The physical content also depends on making one of several possible

choices of independent variables: the metric g.s alone, the metric and connection (gag,F” aﬁ)’ the solder

form and spin connection (e*,w® ) or the solder form and contorsion (e%, C* ;). We carry out two forms of
the variation, (e*,w®,) and (e, C*,).

Two differences from general relativity arise with these choices. First, the asymmetry of the solder form
means that the Einstein tensor and energy tensor acquire antisymmetric parts [25]. We show in general in
Section (B]) and explicitly for the Dirac field in Subsection (B.3.3), that the antisymmetric parts vanish as a
consequence of Lorentz invariance. The second issue is that varying the spin connection in a Riemann-Cartan
geometry gives nonvanishing sources for torsion. We explore the nature of these sources for a variety of types
of field.

For the gravity action, we restrict attention to the Einstein-Hilbert form but with the Riemann-Cartan
scalar curvature. Alternatives with propagating torsion are considered in [19, 21} 20, 22], and with additional
modification in [26].



3.1 Gravity action

The Einstein-Hilbert form of the action with the Riemann-Cartan curvature scalar, in n-dimensions is

ﬁ/ﬂab/\ec/\.../\edeab&_d (17)

Secsk (e, w® ] = X

This action, plus arbitrary source terms, is our definition of the ECSK theory of gravity.
We define a volume form as the Hodge dual of unity, ® = *1 = %eabmcea Ael A...Ae and therefore,
*® = (—1)? in signature (p, q). It follows that

e“Ne’ AL Aet = (=1)Te P
~———————
n terms

where eqp.. . is the Levi-Civita tensor. Let 4. . be the totally antisymmetric symbol with €15, = 1 and
e = det (e# “) = /|gl, so that e1s_,, = eg1a. ., and e'?+" = (—1)* %sabcd. Expanding the curvature 2-form,

1
RONe N Neleqpe.q = SR cpetnel net AL Aeleae
1 .
— §Rab of (_1)q eejc...deabcmdq)
= (n—2)IR*?® @

shows the equivalence to the scalar curvature and we may write S [e*, w® ] = %FL JR®.
We first vary the solder form and the spin connection. As noted above, some differences arise from the
metric S [g] or metric/connection S [g,I'] variations because the solder form is not symmetric.

3.1.1 Two considerations

There are two subtle points regarding the independent variation of the solder form and connection.

First, we require the Gibbons-Hawking-York surface term [[27, 28] 29, [30]] because fixing both je* = 0
and dw® , = 0 overdetermines the solution in the bulk. This can be seen from the conditions for the initial
value problem—specifying the metric and the intrinsic curvature of an initial Cauchy surface is enough to
propagate a unique solution as the time evolution. It is straightforward to check that adding the Gibbons-
Hawking-York surface term resolves the issue, while leaving the expected field equations in the bulk.

The second point is that the decomposition of the connnection w® = a® 4 C% makes it possible
treat the action as either a functional S [e*, w® ] or as S [e®, C*,|. In the latter case the remainder of the
connection is taken as a® = a® (e®) where the form of §.a® (e°) follows from the structure equation.
Varying de® = e’ A a® , we find

D(de?) = e’ Ada’,

Then expanding in components da® . —oa® ,, = e, "Dy (de,, *) —e, "D, (de, *) and solving by cycling indices
yields

1
dat, = 3 (0505 — Mpan®™) [Dc (5ed) —e, ”ngheng (66# h) —e, “D (5ea d)} (18)

If the action includes no explicit torsion dependence, the linear relation between w? and C® means varying
either gives the same result, but the solder form variations give different results for the energy tensor.

The conceptual difference between the variations is seen from the fiber bundle structure. While the
first variation S [e®,w® ;] embodies the Palatini principle fully, varying the Lorentz gauge symmetry gives a
different combination of the field equations. The second form of variation, S [e*, C* ], gauge transformations
are all included in the solder form variation. The difference shows up physically in the source for the Einstein
equation, producing the difference between the canonical energy tensor and the Belinfante-Rosenfield energy
tensor [31], 32]. We examine this in detail, carrying out both methods.



3.2 Palatini variation

We vary e® and w® independently. The connection variation of the gravity action is

K
5SECSK [ea, w?® b] = m /5Rab ANe“A... A edeabcmd + 5SGHY

= K ab c d
= oy [ D) net e o+ 3oy

where D (dw®) = d (6w™) — (dw®) Aw® , — (6w*®) A w” .. We integrate only the exterior derivative by
parts, using Lorentz invariance of the Levi-Civita tensor to redistribute the spin connections.

As mentioned above, the normal derivative of the connection must be allowed to vary on the boundary,
so the surface term does not vanish. This contribution is cancelled by including the Gibbons-Hawking-York
surface term, §Sg gy, which depends only on the induced metric and the extrinsic curvature of the boundary.
Here we assume Sg gy is used and focus on the variation in the interior.

Disregarding surface terms the variation becomes

68ECSK = Il +12 ﬁ /6wab A\ (dec VAN /\ed + ...+ (-1)”73 e VAN /\ded) Cabe...d

2
—2(%_2)! / ((6w™) Aw™ , + (w™) Aw® ) Ae“ ... Aeegpe.
Now use the invariance of egp... ¢ under infinitesimal SO (p, ¢) to write

0 = W eebe..d+ W peace..d+ -+ W gabe...e

so that the second integral becomes may be rearranged to give

K _
I, = —m /(5w“b A (eC Aw® A el netegpe g — ...+ (-1)" et .. nel Ned A w? deabc,,,fe)
The de® and e A w® , terms recombine as n — 2 factors of the torsion, T* = de® — e® A w® . so
6S [ SwP AT Al AeC (19)
ECSK 2 (n — 3)' w € .../AN€ €qped...e

Setting 6w = § A% _e° and resolving the product of solder forms into a volume element, the vacuum field
equation is the vanishing of
K

'ec/\Td /\ee.../\efeabde...f = 3

7"{/ C (& c R c
2(71—3) (T ab+5aTdbd_5dead) P = iy P

Notice that 7€, is the same combination found for the Bianchi identity. Here it arises here from the
connection variation.

Varying the solder form now involves only the explicit solder forms. The result is the usual Einstein
tensor, but with the Riemann-Cartan curvature.

K
2)|58 /R‘“’ Ae’A ... Ae%eupe d

K
— — [ 54 " ARYNEN ... Neleqede.
2(n gy ] e o A hef eacae s

2

_g/é‘Aab (RCb a —I—Rbc e — 53Rcd cd) P

taking care to keep indices in the correct order. Since the first and second pairs of R .q Tetain their
antisymmetry, R® ., =R . the vacuum field equations are

1
—K (Rab_§77abR> =0 (20)
gﬂcab =0 (21)

10



For all n > 2 Eq.(2I) immediately leads to vanishing torsion and therefore vanishing contorsion, C* , = 0.
Using Eq.(0) to separate the usual Einstein tensor from the contorsion contributions

Rab = Rab+DCab_ch/\Cac

and setting C* . = 0 reduces R® ; to the usual Einstein equation of Riemannian geometry, R, — %nabR =0.
Therefore vacuum Poincaré gauge theory reproduces vacuum general relativity. The theories typically differ
when matter fields other than Yang-Mills or Klein-Gordon type are included.

Notice a crucial difference between the solder form variation and the metric variation. The metric
variation takes the form

1
0S = 5/5go‘ﬁ <’Raﬁ — ggaﬁR) Vlgld"x
so the symmetry of the metric is induced upon the Einstein tensor to give

1
G(ap) = Rap) ~ 5908R =0

This gives ten equations that determine the ten components of the metric. By contrast, the coefficient
§A%, of the solder form variation §.e® = §A% e’ is asymmetric. This results in the vanishing of the entire
asymmetric Einstein tensor

gaﬁ =0

Accordingly, this determines the sixteen components of the solder form. While an additive term [31], 32]
is known to symmetrize the energy tensor-thereby forcing the antisymmetric part of the Einstein tensor
to zero—we retain asymmetry on both sides of the gravity equation and find a systematic approach to the
antisymmetric part. With the alternate form of the variation, variation of the Lorentz gauge affects only the
Einstein equation, accounting for the different number of degrees of freedom due to differing symmetry.

3.3 Fiber preserving variation

While the (e®, w®,) form of variation gets us quickly to general relativity, a significant issue arises.

The variables (e*,w® ;) do not transform independently under the fiber symmetry. Specifically, under
Lorentz transformation A® , the solder form transforms as a tensor, > = A® beb but the spin connection also
transforms as a local Lorentz connection, @ = AwA~! — dA A~'. This means that while the field equations
arising from separate e® and w® ; variations are correct, they will be shuffled by the fiber symmetry. This is
most evident with matter sources, where it leads to the difference between the asymmetric canonical energy
tensor and the symmetric Belinfante-Rosenfield energy tensor. We show this explicitly with our discussion
of sources in the next Section.

We now consider the variation of two Lorentz tensors, (e, C* ). Writing a® , = a*, (e) places the effect
of a lifting in the bundle entirely within the solder form variation. Explicitly separating the compatible and
torsion pieces leads in a straightforward way to the Belinfante-Rosenfield energy tensor.

Before we begin, note that when we separate the contorsion parts of the curvature

K " .
Secsk = m5e,a(e) /'R PAEEA.L A edeabcmd +38Sauy
- ﬁ ate) / (R™+DC™ —CPAC" ) Ne® A... Neeape..a + 0Scny

it is tempting to integrate the derivative term by parts and use De® = 0 to set it to zero

/DC“Z’ AN A ... AeYegpe 4= /C“b ADe“ANe® A...Ne%aped..e =0
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However, this is inconsistent with the solder form variation
(n—2) / DC® ASe® A ... AeYegpe q = /C“b AD (6e°) Ne® A .. ANeeaped..c 0
For this reason it is important to vary the action before integrating.

3.3.1 Varying the contorsion

The contorsion variation is straightforward. After variation of the contorsion the compatible derivative term
is integrated by parts, where De® vanishes.

K ab c d _ K ab Od e o
72(11—2)!/]3(50 JAeA...Ne eabc__.d—i?))!/(sc ABe”Nel AL Ae‘eaped..c =0

2(n—

For the remaining contorsion term

5S¢ = _72)/250%0“ ANeCA ... Nelegpe. g

— be
= /50 (C° oy = 50" ) @

Substituting C*,, =5 (T, ¢ , +T%,, — T,

yields

% . @) to express the resulting field equation in terms of the torsion

K
5 yabc - O
This is the same result as from the original Palatini variation.

3.3.2 Varying the solder form

The solder form variation is now more involved. After setting R = dw® — w® A w® . and substituting
w® = a® + C* we vary both e® and a®® to find

K
Se.a(e)S = RN A ... Aelesp 88
e,a(e)PECSK 2 (n — 2)| e,a(e)/ e € €qabc...d T GHY

K ab c d
- m/i’@a )A€ A Neleae. a+ 5Sany

—n/&Ac . (R’“ .= %Réfj) @

From here the handling of the first integral is parallel to that leading up to Eq.([[d) but with the compatible
connection instead. The result is

. 1
6Spcsk = ﬁ /5aab AT Nel .. Aefeaper i — m/&AC k (Rk .= 57355) ®

but there is now a further variation using Eq.(I8]). Substituting and integrating by parts, then replacing the
basis forms with the volume form gives an imposing product.
K

a C ac 1 € 1
2/ (63n be _ 80 )56# [——e rsdD.Te 2 e,
X (05" (607 — 6500) + 0g (550" — 65" 0¢) + 67 (350 — 60¢")) @

—n/aAc L <R’“ .= %R&’f) o

Oe,a(e)SECSK Fngn DT, 4 e, "o A D T mn]

12



Distributing and collecting terms eventually leads to

1 1
5SECSK = ’i/ (5A6b) (Da <§ (Tbac + Tacb + Tcab) + nacTe be nbcTe ae> - <Rbc - ERT]bc)> P

where de® = §A° beb. Replacing Tope = Jave — Nacl€ o + NabT¢ . the resulting field equation takes the
simpler form

1 1
—kK (Rbc - iRnbc - §Da (%ac + %cb + zab)> = 0

This field equation is most revealing when written in terms of symmetric and antisymmetric parts.
Together with the contorsion variation we find:

1 1,
7?f(bc) - anbc = §D (%ba + %ca)
Rbc - Rcb = _Dayabc
9abc - O (22)

Notice the tight relationship between the torsion equation and the antisymmetric part of the Ricci tensor.
Combining these imposes symmetry on the Ricci tensor. This is the same conclusion as we reach from the
first variation, but with the added insight that the antisymmetric part of the Ricci tensor is the divergence
of the contorsion equation, hence zero.

The antisymmetric equality R + %D“%bc = 0 is just what we get if we restrict the variation to an
infinitesimal Lorentz transformation, § A% = glbl,

Without matter fields, it follows that the torsion and Einstein tensor vanish, in agreement with the purely
metric variation of general relativity.

4 ECSK theory with matter

ESCK theory with sources differs from general relativity when the source action depends on the connection.
Let the action now be

S = SECSK + Smatter

K ab c d A A _a
= m/’l{’, ANe‘AN...Ne eabcmd—i-/L@ D& ,e)<I>

for fields ¢4 of any type. Returning to the Palatini approach we vary the connection w® , and the solder
form e® to find
1 oL
_ ba c
0 = —/5A |:Ii <Rab - anab) - WGM 770a:| L3]
b | E e oL
—|—/5w c|:§9 ab+—5wab C:|‘§

Here the solder form variation is written as de® = §A¢ eb for arbitrary §4¢, . With the solder form and
spin connection as independent variables there is a natural association of sources with the curvature and the
torsion.

1 oL
R (Rab - §R77ab> = me# Cnca
I
E ¢ oL
LT = (23)

C
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The Einstein tensor is sourced by the asymmetric canonical energy tensor Ty, = %e 4 “Nea while the torsion
W

is sourced by the spin tensor

oo, = b oL (24)
5wab . 5Cab .
with 0¢ ,, = —0°,.

However, this association depends on the choice of independent variables. As discussed in the previous
section, these sources are mixed when we apply the fiber symmetry. For this reason, we now consider the
action as a functional of the solder form and contorsion, setting a® = a? (e°).

Because the contorsion variation leads to the same expression for the torsion as the w
Sw? equation remains unchanged. The torsion now has source o .

ab variation, the

K
5 96@1) = —0o° ab (25)
Before carrying out the solder form variation we show the mixing under the fiber symmetry explicitly.

4.1 Lorentz symmetry

Under local Lorentz transformation, both the solder form and spin connection change. The change in the

spin connection is given by the usual gauge form @ = gwg=! — dgg~!. In detail, for an infinitesimal gauge
transformation g%, = 0%, + €, where €4, = —€p, the change in the spin connection is
Srwy = [(0f+e" Jwe (6 —e?y) —de (05 — % y)] — Wy,

. a
= —De*,

At the same time the solder form transforms as a Lorentz tensor, épe® = ¢ beb. This means that under an
infinitesimal gauge transformation we must include changes in both the solder form and the spin connection.

5L, 5L .
/W(SLS'U‘ ¢+/W6Lw C‘I)

oL
= /mab Cep‘ ‘P — /O'c abDCEab¢
n

oL
_ c o —— Dc c ab(I)
/ ( eu 77 56” b + o ab> €

Here we may require the variation to vanish on the boundary. Since £?® = —¢® is otherwise arbitrary, the
antisymmetric part of the direct solder form variation must equal the divergence of the spin tensor.

5L Smatter =0

D o ab T = ca—L[anb]c = 0 (26)
dey
More importantly, the choice of independent variables determines the form of the energy tensor. Re-
specting the bundle structure we include the dependence of the compatible part of the spin connection on
the solder form, a® , = a® (e) when we carry out the solder form variation.
Varying the solder form and the contorsion independently, and using Eq.([24]) for the contorsion variation

0 = —5/770666 H(Se#b (Rbc - %Rnbc - %Da (%ac + %Cb + zab)) P
oL 0L a d
< P
+/ <5e#d * 5am . de,d )56”

0 = /5Cabc(gfcab+acab)@
\%
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5L Jaab
aab . Jeﬂd

Next, carry out the solder form variation JSLd +3 < in detail.
©

4.2 Variation of the solder form

The source for the Einstein equation now depends on

5L 6L sa )\ .,
5eSmatter = /(6€Md + Saab . 6€Md >e# 6A e‘I)

Setting M‘Z—% = JC% =0¢ , this becomes dcSmatter = f (5‘2Ld 56H dy gc abéaab C) ®. Then substituting
c . u

([IR) and integrating by parts

oL 1 a, be ae c c c
6eSmatter = / (6€—d + 5 (5dnb - 5(377 ) [_ec #Dea ab + Dda abCe #ch + DCU abCe #]) 56# dq}
m

oL

= /(6—d+Da0'ead—DCO'C8 d_DaO'de a) eeuéeud@
Cu

Combining this with the curvature contributions the field equation becomes

1 K
K (Rbc - anbc> - §Da (%ac + Zab + %cb) - Tbc + D* (Ubac + Ocab — Uacb) (27)

The source for the gravitational part is the Belinfante-Rosenfield energy tensor
BR a
Tbc = Tbc +D (Ucab — Oachb — O'bca)

and the antisymmetric part vanishes by Lorentz invariance

BR oL

Tio = "5 e T D%0ae =0
e

n
Notice that the torsion and spin tensor terms match up exactly into %%ac + Opae cOmbinations.

4.3 Collected field equations

Separating symmetric and antisymmetric parts and collecting the results,

1 . 0L o (K K
(R o) = o (o) ()
K a . OL
HR[bc] + §D %bc = 0 =D Oabe + 6# mnc]e (29)
m
gycab +0“ = 0 (30)

We see that the antisymmetric parts vanish by Lorentz invariance ([29) and the source for the symmetric
Einstein tensor is the symmetrized canonical energy, while the spin tensor provides a source for torsion.
Imposing this latter condition imposed we are left with the reduced equations

1 oL
k(R be) — _Rnbc> = € e—nc e
( ¢ 3 g dey ®"
gycab = -0 ab (31)

These are exactly the symmetrized version of the field equations from the (e®, w® ) variation, Eqgs.(23).

We examine the torsion produced by scalar, Yang-Mills, Dirac, and Rarita-Schwinger fields and a certain
class of bosonic fields. Then we develop notation for general half-integer spin % (2k + 1) valid for all k. We
begin with certain exceptional cases.

15



5 Sources for torsion

Before considering fields with nonvanishing spin tensor, we note some classes for with ¢ ,, = 0. Fields other
than these exceptional types generically drive torsion.

5.1 Exceptional cases

There are two important exceptional cases—Klein-Gordon fields and Yang-Mills fields.

5.1.1 Klein-Gordon field

For Klein-Gordon fields, the covariant derivative contains no connection, D, ¢ = 0,¢.

1
Sk = 5/(9”V5M¢5u¢+m2¢2) Vigld'a

Appropriately for a scalar field, there is no spin tensor. This holds true for internal multiplets of scalar fields
@' as well.

5.1.2 Yang-Mills fields

Yang-Mills fields comprise the second important class of exceptions. Let 4,7, ... index the generators of an
internal Lie symmetry g € G, that is, the fiber symmetry of a principal fiber bundle. Then the connection
satisfies the Maurer-Cartan equation, dA? = — %ci j LA AAF where ¢! ;1 are the structure constants. Curving
the bundle the field strength

. 1. _ .
P = dAZ+§cljkAJ ANA
is independent of the spacetime connection and the corresponding action

S:/Fi/\*Fi

has vanishing spin density. The result also holds for p-form electromagnetism [33].
These observations mean that the Higgs and Yang-Mills fields of the standard model do not drive torsion.

5.2 Bosonic matter sources

The currents of generic bosonic sources have nonvanishing spin tensors. We consider source fields of arbitrary
integer spin ©%* having quadratic kinetic energies.
When the kinetic term of the fields is symmetric in derivatives we have

1 . .
Skinetic = g/Qa,,,bcmd’D@amb DE e

where Qq.. be..d = Qc...da...» for some invariant tensor field Q. The contracted labels play no role in the solder
form variation, so we may write them collectively as A =a...b, B =c...d. The action is then

1
Skinetic - Z/QAB’D@A *D@B

where we assume Qap = @p4 is independent of the connection, though it may depend on the metric.
The field equations ([28)-(@0) or the reduced equations (BI]) hold without modification. We need only find
the relevant variations of the matter actions.
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For these fields the solder form variation only enters through the metric variation as n® (de, “e, ¥ + e, e, ¥) =
dgH¥ since

1
Skinetic - §/QABD®A *’DGB

1 v mn
Q/QAB (9) 9" D.0"D, 0" /=gd"x
Therefore the energy tensor takes the usual symmetric form plus any (symmetric) dependence on Q45.

,0QAB
dghv

1
T, = QapD,O"D,0F — 1l (Qapg""D,O"D,OF) + e, e,
despite the asymmetric solder form variation.
However, the connection variation leads to a nonvanishing spin density. Restoring A - a...b,B —c...d

1 a...b e...b ,a a...e, b * c...d
6wSkinetic = méw / Qa...bc...d (d@ +6 w e +...40 w 8) Do

1
— 5 /6wfegQam...nbc..,d (na[f@e]m...nb +. .+ nb[f®|am..,n\e]) DIO O°1%

The spin tensor is therefore

o fe _ EQam...nbc...d (na[f(l)e]m...nb +o+ nb[j (I)|am.,.n|e]) ng)c...d (32)

g9

This has the form of a current density.
From Lorentz invariance Eq.(26) and the symmetry of the energy tensor Ti,; = 0 we immediately have
conservation of the spin tensor

DCUC ab = O (33)

We conclude that for the types of bosonic action considered the Poincaré gauge equations take the form

1 1
R <R(ab) - anab) - QABDa@ADbeB - 577&5 (QABQ#UD;L@ADUGB)
1
gz ab  _ _dem...nef...g (nd[b@a]m...ne 4.+ ne[b@\dm...n|e]) DC@f...g

Coupling such higher spin fields to other sources may lead to failure of causality or other pathologies.
For example, for a vector field with Q., = 745 the kinetic action is simply

1
Skinetic = 3 /g“”go"@DlL@uDa@g\/—gd"x

so the energy tensor has the usual form and the current density is simply o, ab — % (@bDHG“ — @“DHGZ’).
The field equations are

1
Tab - 7’]cdl)a(acDb(ad - 577&5 (chgmjD,u@CDv@d)
1
o, = 1 (6'D.6" — ©*D.0")

The torsion remains nonpropagating and vanishes whenever the source field ©° vanishes.
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5.3 Dirac fields with torsion

It is well-known that the Dirac field provides a source for torsion (among the earliest references see, e.g.,
[34], 35, 36, 37, B8], (18], [39]). The flat space Dirac action takes the same form in any dimension

Sp = a/ (¢ (i — m) ) ed"x (34)

where @ = ~v%e, #0,. The principal difference in dimension n is that the spinors are representations of
3

Spin (p, q) and therefore elements of a 2[3]_dimensional complex vector space while the v* satisfy the Clifford
algebra relations

{7%,4"} = —2p""1 (35)

where 74 is the (p, ) metric.
However, in a curved space the spin connection introduces an additional term. The covariant derivative
of a spinor is given by

1 C
D,y = 0,0 — §wb MchUJ
where o4 = [V, 7). The action becomes

Sp

a/ (¢ (i —m) ) ed"x
= a/ (v'h (ie, *v*D,, —m) Y) ed"x
where h is Hermitian hf = h and reality of a vector v® = ¢)Thy®) under Spin (p, q) requires

,_YaTh — h’}/a
It follows that o®Th = —ho®. While h is generally taken to be 7° in spacetime, h transforms as a < g )

1 . . .
| ) spin tensor so that h = 7° can hold only in a fixed basis. There
exist satisfactory choices for h in any dimension or signature (see below). The solder form components e, *
connect the orthonormal basis of the Clifford algebra to the coordinate basis for the covariant derivative,
v4e, D,

The conjugate action now differs,

Sy = a/ (1/; (—iﬁuf}/“ —m) 1/)) ed"x

so we take the manifestly real combination

spin tensor while «° transforms as a

1/ N
So. = 5 (S0 +5b)
- —= N )
= % /1/) (i”ya Oq—10gY"—2m — %wbca {’ya, ch}> Yed'x
showing that the connection now couples to a triple of Dirac matrices —%wbca {”ya, ch} = —2iwbca*y[a*yb~yc] .

This form is valid in any dimension. In 4- or 5-dimensions the triple antisymmetrization may be shortened
using v5. The action is now

Sp = a/iﬁ (%ea “ﬁwaﬁuw —m —ie, “wbcuw[awbvc]) Yed'z (36)

18



where 7% ) = 1y°0, 1 — 0,07,

The simple form for the anticommutator turns out to be a low-dimensional accident. In the Appendix
we show that the general form for

It is convenient to define T'@192--0r = ~la1402  ~akl ipcluding the particular cases I' = 1 and 0% =
[Wa,wb] for the Spin (p, q) generators. For k < § we may write I'*+%2% in terms of y5 = ™% ~%» and
[e192--@n—k “where ¢" is chosen so that *yg = 5.

The simple form for the anticommutator turns out to be a low-dimensional accident. In the Appendix
we show that the general form for the anticommutator {I‘“laz"'“k,obc} depends on both I'®1@2--%+1 and
[@1@2--2k-1 with the second form absent for the Dirac k = 1 case.

5.3.1 Spinor metric

The Clifford relation for the gamma matrices is
{v*2"} = —29*

with % = diag (—1,...,—1,1,...,1). Here the y-matrices are numbered v' ...y9y%"1 .. 497 and we take
the first ¢ matrices hermitian. Then for a,b < ¢ the ~ys satisfy the timelike Clifford relation

{1} =" =+1

The final p vs must be antihermitian to give hermiticities of o®® appropriate for generating both rotations
and boosts.
We seek a spinor metric i such that both the spinor inner product

(¥, 0) = 91 hapy”

and the n-vector

v = PThyep
are real. These immediately imply
A = h
,_YaTh — h’}/a

To satisfy the second condition we take h proportional to the product of all timelike s, h = Ay’ ...~9. This
insures that y2Th = (—1)9" hy® with the same sign for all ¥*. Then hermiticity requires A = T

This is all we need for ¢ odd. When ¢ is even we include an additional factor of v5 where 75 =
n(n—1) 1

Pt == ~1.. . 4™ In this case we must also include an additional 9. Therefore we define

.a(a=1) 1 o

[ty g even
17 2 Yy /yq qodd

Adopting the usual notation, we may now let 1) = 1Tk for spinors in any dimension. We note that y5h =
(_1)q hys

5.3.2 Energy tensor and spin density from the Dirac equation

From the action (BG) the energy tensor and spin current are immediate. Since the Dirac Lagrangian is
proportional to the Dirac equation, there is no contribution from the volume form. Therefore the source for
the Einstein tensor is

oL .- = ) —ede
5o b 6n Nea = —iathyae, " 0 uh + 2iangcwaerpT dey

“w
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giving the reduced curvature equation (3II) the form

1 . A= . I Tede
K (Rab - §R77ab> = —W?/W(aeb)” D ;ﬂﬂ + 2zawde(bna)cwr ¢ (

with 2iawde(bna)c1/;FCde1/J becoming the axial current aw®®

(aab)cdeﬂwe%d) in 4-dimensions.
The spin density is

oL
&Uabc

= —iaT %)

cab

so the torsion is given by
K _
_gcab —ia I\abc
. Ty

This axial current in 4-dimensions. Many studies of torsion in ECSK and generalizations to propagating
torsion are restricted to this totally antisymmetric form of .77¢.
5.3.3 The general relativity limit

We wish to examine general relativity with coupled Dirac sources. This source still has a spin density, despite
the absence of torsion, and it is necessary to determine whether this puts a constraint on the Dirac field.

With vanishing torsion the connection reduces the connection is compatible, w®® s abe ., though the
action must still be made real by adding the conjugate. From the curvature field equation Eq.([27) with
%bc =0,

1
R <Rbc - gRT/bc> = Tbc + D* (Ubac + Ocab — Uacb)

Although there is nonvanishing spin density there is no second field equation. There is now an antisymmetric
part to the Einstein equation.

0 = T[bc] + Dagabc

This is exactly the part that vanishes by Lorentz symmetry. The Einstein equation therefore reduces to the
symmetric expression

1
K (Rbc - gRT]bc> = T(bc) + De (Ubac + Ucab)

where the spin tensor is the antisymmetric current

Because this is totally antisymmetric, opqc + 0cap = 0 and we recover the Einstein equation with the usual
symmetrized energy tensor and no additional coupling.

1
R <Rbc - §Rnbc> - T(bc)

Therefore, despite nonvanishing spin tensor, Dirac fields make only the expected contribution to the field
equation of general relativity with no additional constraint.
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5.4 Rarita-Schwinger

The spin—% Rarita-Schwinger field [40] is known to give rise to acausal behavior when coupled to other fields
[41]. This problem is overcome when a spin—% field representing the gravitino is coupled supersymmetrically.
Therefore, we first examine the 11-dimensional supergravity Lagrangian.

5.4.1 11-d Supergravity

Here the basic Lagrangian
1 1 — e 1 5
L= ﬁeR — 561#“1"“ Dy + 4—86ija,@

includes the scalar curvature R, the spin—% Majorana gravitino field v, and a complex 4-form field built
from a 3-form potential as F = dA. The covariant derivative has connection w®, and v* = e, #~°.

This starting Lagrangian is augmented by 1,-F coupling terms and a Chern-Simons term required to
enforce the supersymmetry ([42] [43, [45] [46]). The result is the Lagrangian for 11D supergravity, first found
by Cremmer, Julia and Scherk [45].

1 1 — 1
— _ _ y224e% _ _
L = 252 eR 261#“1" D, [2 (w w)] Va

X (B, 10 P07, +125 T ) (F + F)

vafBp

ay...011
€ Fal...a4Fa5...ocha9a10a11

Since we are primarily interested in sources for torsion, we will only need the kinetic term for the Rarita-
Schwinger field. While is it possible that supergravity theories—which exist only in certain dimensions—are
the only consistent formulation of spin—% fields, there may be alternative couplings that allow them. For this
reason, we will consider the original Rarita-Schwinger kinetic term in arbitrary dimension as a source for
torsion, omitting additional couplings.

5.4.2 The Rarita-Schwinger equation

In flat 4-dimensional space the uncoupled Rarita-Schwinger equation may be written as
prof 1 upB
€ Y Y50as + gma Yvg = 0
with real action
0 7 KpV 1 v
SRS = wu ehrp '75'7&617 - §maﬂ wu
In curved spacetime, generalizing to the covariant derivative 0,13 — Dy1)s where

1 a
Da1/}ﬁ - 80/‘/)5 — ’(/)‘U,F'u Ba — gwabag b’(/)ﬁ

we must explicitly make it real. As with the Dirac field, the extra terms give an anticommutator. Noticing
that

1
nEQVITP _ nrQVp
3 Tr va 55 T av
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we have

1
Srs = 5 (S + S*)
0 1 1 e9% 1 14 1. P T
= SRS - 5 € 51!]#’75’7“1#/7/11 av + 5 [w#757N¢pT au}

1 1 rav (7 a 7y a f
+§/ (_iwabaeu (¢M757n0 bwy+ [wu’YS’YnU bwl’] ))

and therefore, taking the adjoint and rearranging

1 _ _
SRS = S%S - Z /EHHQV (wu/yf)/yrﬁprpau + Q/JPTPQU/YE)/YNQ/JH)

1

_Z /Wabaeﬂﬁayqz;t’yf) {’7&7 Uab} wu

The explicit torsion coupling here is surprising, and forces us to be clear about the independent variables.
We may set T? = de® — e’ Aw?® , and vary (e?, w?,) or we may write w® , = a®, (e°) + C*, and write the
torsion in terms of the contorsion T® = C%, A e’, then vary (e?, C* »)- We choose the latter course, since
this respects the Lorentz fiber symmetry and yields the Belinfante-Rosenfield tensor as source. For the spin
tensor it makes no difference because

6,T* = —e’Adw,
scT* = —ePnsce,

Before carrying out the variation we develop Rarita-Schwinger action in higher dimensions.

5.4.3 The Rarita-Schwinger action in arbitrary dimension

To explore higher dimensions we introduce some general notation. Clearly we will need the Hodge dual, but
it yields a more systematic result if we combine the dual with the gamma matrices.
Define:

a

Y = e
P = waea
(/\’Y)k = Yoy --Va € AL A€W
* 1 k
o= ]

In particular, '’ is just the volume form ®.
It is not hard to check that the Dirac case may be written as

S = / (wrl Nidi — mET% — £ (T, 0%} A wcdw>

4

by expanding the forms.
To rewrite the Rarita-Schwinger action in arbitrary dimensions we replace the volume form and set

1 1
o = (1 (o) (e o
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Then

- 1
S%S = /1/;# (e““p”%”yﬁap — 5ma‘“’> U, P

- —1)?
/ (6MNPVwH757HapwU%ed€fged A ef /\ef /\eg)
1 " 1 0'1 afuv 1 e g
_/gm‘/’u (—1)? EUP 3¢ Bu eagpgwygedefged/\e Nel Aed

This allows us to eliminate the 4-dimensional Levi-Civita tensor by reducing the Levi-Civita pairs (741!)(] e P eherqg

and (_41!)q e e g0 tg, to combine a solder form with each spinor. Then

Sks = /ﬁ; AYs5Ye A ecdap

1 - 1
- / gmw A <§a””epgdeed A ee) A

Now set
Y5yt = %W[a%msabc e =il?
and
L enad _ Lagap _ 2
ga €abcd€” N e’ = B (”y ol ea/\eb) =T
to write the action as
S%s = /(17;/\I‘3/\id1,b—m17;/\1"2/\1,b) (37)

By using the Hodge dual in I'? and I'"® we have eliminated the specific reference to dimension. Equation @7
is the Rarita-Schwinger action in flat (p, ¢)-space.

5.4.4 Rarita-Schwinger in curved spaces

To generalize Eq.(37)) we now replace the exterior derivative with the covariant exterior derivative
Srs :/({pAﬁMD@b—mﬁ;/\r?w)
keeping the action real by taking Sgrs = % (S'Rs + S’LS). The covariant derivative 2-form D) is

Dy = dyp—1), TV — %wmnom" A (38)

Therefore, the direct torsion-Rarita-Schwinger coupling will occur in higher dimensions as well.
Expanding the action and separating the free contribution

Sns = Shety / (¢ AT A (=) + (& AT? A (=i, T)) )

: : t
+%/ (1/) AT3A (—%wmn A om”dJ) + (1/) AT3 A (—%wmn A am"¢>) )

23



The conjugate torsion piece us given by

%/(@AF“(—MWT’”))T = —%/(—1)“+1 P T AT A9

and the conjugate spin connection piece becomes

l/ PAT3A Lo A M b 1/ P Ao e A
Therefore, the full action is
Srs = /(@%Ar?’/\z’dzp—m{p/\r%\z,b)
—%/({z;/\r?’/\Twa—(—1)”T%a/\r3/\¢)
i [ -
—Z/@b/\{I‘g,UCd}/\wcd/\l/i
The anticommutator is

{’Y[al ,yag,yag] , O,de} = 4 Z (’Y[al '7a2'7a37d'7€] _ (nal dnage _ nagdnal e) nddnee,yag
ay1<az<as

+ (naldnage _ nagdnale) nddnee,yag _ (nagdnage _ nagdnage) nddnee,yal)

so the Rarita-Schwinger spin tensor contains couplings involving I'!, '3, T'®,

5.4.5 The Rarita-Schwinger spin tensor

Varying the action with respect to the spin connection or contorsion

% / (=)™ (—e® A dw® ) Do AT A9

8,Sps = —/%@/\1‘3/\(—eb/\5w“b) Vo —
+%/1]J/\{I‘3,aba}/\5w“b/\1/i

Expanding the forms, setting dw®, = A® e and collecting the basis into volume forms this becomes

)
0wSrRs = 5/ abe (1/167[8 byl — oylbandly, — —1/)(1 {7 [dryeyel gt }1/) > ®
so antisymmetrizing on ab and expanding the anticommutator as
—wd {”y dyeyd g0 }we = Way' "V y Iy e +i (020t — nPn ) Payepe
+Z( ae bc ac be) wd,ydwe +’L( ad be ae bd) 1/1(17 w
the spin tensor is
i /- _
ot = (wev[evbvc]zb“ — ey By y Ayl 4 pPylayeyly, — grylty v%e)
+ithay Y ey Iy e + 0 (770t — 1Y) Yay e

4 ( ae bc _ nacnbe) wd,ydwe 44 ( ad be ae bd) wd,y w
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After using the torsion equation, the source for the Einstein tensor is always the symmetrized canonical
tensor (BIl) but the torsion is now driven by much more than the axial current. We next use the full spin
tensor , Eq.([39), to compute the source for each indepdendent part of the torsion. Since the reduced field
equation shows that §.7¢,, = —0¢ , it suffices to find the trace, totally antisymmetric, and traceless, mixed
symmetry parts of acab The corresponding parts of the torsion are proportional to these.

First, the trace of the spin tensor reduces to a simple vector current.

Oc @ = Z(TL - 2) (djb'}/ewe - J)eﬂ)/ewb)

For the antisymmetric part there is no change in the totally antisymmetric piece i1gy!*y2y¢y9~lap,. Of
the last three terms involving metrics, the first two vanish while the antisymmetrization of the third gives

( (nadnbe _ naenbd) &d,}/cd}e)[abc] _ _2i1/_)[a,ybwc]

The remaining terms require the abc antisymmetrization of ¥y[vyy® and P~l@~yeyclip,. This is compli-
cated by the existing antisymmetry of ebc. Write these out in detail and collecting terms we find

_ 4 - 1
[ebc a - = leca b, cl [abc]e
(Beratrdue) = 30l e 4 gyl
4 - 1-
anlbaenc —  Zplasbaca el e lanbacl
(wwvw)w VY e + 5¥ (7 vv)we

abc]

with the full contribution to ol being % times these. Combining everything, the source for the totally

antisymmetric part of the torsion is

VR a c 2Z A e_a c a c.e

ole®tl = ipgylayPy iy iyl + S (1/)87[ vorbypd — gplagbycy ]we)
i 7 ~lasbacl e e labacl _ oz lasb,cl
+6(¢e7 Yy w(v vv)we) 209"

containing 1-, 3-, and 5-gamma currents.

The traceless mixed symmetry part 5°%°

is found by subtracting the trace and antisymmetric pieces.

seab _ jeab _ feab] _ ﬁ (o,  — o, <)
The result is
G = (m[e Pyl = Guyleqiqdyt + Ghaleyyy, — geqlyeydy, )
-3 (@5 yleqaybyed — qplaqbyeyel %) + 2itplyPyc)
b (P — By U) — g (B — BrU) + 1 (570 — 9w

The traceless, mixed symmetry piece therefore depends on 1- and 3-gamma currents.

Therefore, while the Dirac field produces only an axial vector source for torsion, the Rarita-Schwinger field

provides a souce for each independent piece. Moreover, since a spln—— field in n-dimensions has n x 2[ J+1
degrees of freedom while the torsion has —n2 (n — 1), generic solutions may be expected to produce generic

torsion except in dimensions n = 5,7 or 9.

25



5.5 Higher spin fermions

We have seen that the vacuum Dirac (k = 0) and Rarita-Schwinger (k = 1) actions for spin-22tL may be

2
written as
S, = / (YT Aidy — myT %))
Sy, = /(z,’z;Ar?’Mdzp—mz,’zmrQ/\qp)

The pattern seen here generalizes immediately to higher fermionic spins in any dimension n > 2k 4 1, with
the flat space kinetic term depending on I'?**1 and the mass term depending on 2" for spin # fields.
Including the covariant derivative then adds torsion and anticommutator couplings.

Sk=0

/15 (%rl ni'd —mI‘O> »— %&{rl,ae-f}wAwef

Sp—1 = /{b/\(r?’mw—mr%\zp)
i

2
—i/{m {T°,0°} Awea AP

/ ({b AT3 AT, + (1) T, AT3 A 1[1)

5.5.1 General case definitions

The covariant derivative is similar to that for the Rarita-Schwinger field (B8], but for spin 25EL there are is

2
a factor k times the torsion term. Expanding
Dy =e* Ne A...Ae"Dyihy, 1,
the expansion is clearest in coordinates,

D = Dutha. pdat Adz® A ... Ada?
= Outa. pdat Adaz® AL Adz? =y, TP, dat Ada® AL Ada”

1
— o= Ya. I g At Ada® AL A da’ - iwabuaabd}a“ﬂdx“ Adz® A ... Ada?

Antisymmetrizing each T'? ap gives a torsion wa___pI‘p ﬁ#dx“ Adz® A...Adz? Adzf = TP A 1,bp where we
define ¥ o = Vpa..o Ndz® A ... Adx?. We get the same expression for each vector index so rearrangement
gives

Dy = dop— kTP A, — %wab A o (40)

The same result follows in an orthogonal basis, but it is easiest to see using coordinates.
'
For the generalized T's it is useful to normalize to avoid overall signs. Setting hr* = (hI‘k) introduces

a factor of (—1)k, but including the fields the adjoint of the combination 9 A T2**! A idep introduces an
additional factor of (—l)k . We therefore require no phase factor and can conveniently define

Fm

L, m
o] [(AY)™]
for all integers m.
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s 2kt 1
5.5.2 Spin TJF fields

To start, we take the flat space Spin (%H) action to be
SY = / P A (1“2’”1 Adidp — mI?* A 1/;) (41)

after taking the conjugate and expanding the forms explicitly to check that S? is real. Notice that P Adap is
a (2k + 1)-form and therefore SY exists only for n > 2k + 1. This makes Rarita-Schwinger the maximal case
in 4-dimensional spacetime. Then, replacing d = D using Eq.[@0) and symmetrizing, the gravitationally
coupled Spin (2£-) action is

- A

As with the Rarita-Schwinger case, we find the real part of the torsion and ¢®® parts. For the torsion
terms

S (T) = 1/{0 A (r2k+1 A (—ikTaA¢a)) n % / [ﬂmﬁkﬂ A (—ikT® m/;a)]T
zk

= -5 (1/1/\1"2k+1/\T“/\1,b + (- )"*’“T“A{baAFQ’““Aw)

while the 0% terms still give an anticommutator

S (o) = %/ﬂm{r%“,a‘“l} A <—%wch¢>

Therefore, the action for gravitationally coupled Spin (%T“) fields is
/{b A (I‘Q’“+1 Aidep — mI?* A ¢)

ik -
’L2 (w A 1-12k+1 ATe A w + ( )n+/€ T A wa A F2k+1 A ’l[i)

1o .

+5 /¢ A {1“2’”1,00‘1} A <—%wcd¢) (42)
The spin tensor always contains the anticommutator, which always brings in couplings involving I'**~! and
I'?#43 only (see the Appendix). The Dirac field has k = 0, so only the I'* term is possible, while for

Rarita-Schwinger fields with & = 1 we see both I'* and I'°.
There are also direct torsion couplings of the form

kp AT AT Adp, + c.c.

so the Spin (2k+1) field may emit and absorb torsion. This is absent from Dirac interactions because there
is no vector index on %, but does show up in the Rarita-Schwinger spin tensor. If the action includes
a dynamical torsion term this constitutes a new interaction unless there is a consistent interpretation of
torsion in terms of known interactions.

The spin tensor is given by a simple variation, followed by reducing the basis forms to a volume form.
The result is

ik ke -
o = B (g — () ) g T e 0
_'_i (_1>kn—k—n+1 &al...ak {F[al...akbl...bkc]7 O,ab} 1/}b1...bk 52111......21;;111...@6

The anticommutator is a linear combination of I'2*~1 T2k+3 (See Appendix [B]) so together with the torsion
contribution we have the original and both adjacent couplings [2k=1 p2k+l P2k43 I ig extremely likely
that, like the Rarita-Schwinger field, higher spin fermions drive all invariant parts of the torsion.
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6 Conclusions

We implemented Poincaré gauging in arbitrary dimension n and signature (p,q) using Cartan’s methods.
The principal fields are the curvature and torsion 2-forms, given in terms of the solder form and local Lorentz
spin connection. The inclusion of torsion produces a Riemann-Cartan geometry rather than Riemannian.
We found the Bianchi identities and showed that the Riemann-Cartan identities hold if and only if the
Riemannian Bianchi identities hold.

Replicating familiar results, we reproduced general relativity in Riemannian geometry by setting the
torsion to zero and varying only the metric. The resulting Riemannian geometry is known to be consistent
and metric variation leads to a symmetric energy tensor.

We examined sources for the ECSK theory, that is, the gravity theory in Riemann-Cartan geometry
found by using the Einstein-Hilbert form of the action with the Einstein-Cartan curvature tensor. The
vacuum theory agrees with general relativity even when both the solder form and connection are varied
independently, but there are frequently nonvanishing matter sources for both the Einstein tensor and the
torsion.

The first issue we dealt with in depth was the choice of independent variables. The spin connection was
shown to be the sum of the solder-form-compatible connection and the contorsion tensor w® , = a® , +C* .
We compared and constrasted the resulting two allowed sets of independent variables: the solder form and
spin connection (e%,w® ;) on the one hand and the solder form and the contorsion tensor (e, C* ) on the
other. When choosing the latter pair the compatible part of the spin connection a® ; must be treated through
its dependence on the solder form. We demonstrated explicitly how the two choices of independent variable
differ in their relationship to the Lorentz fibers of the Riemann-Cartan space.

Changing independent variables changes the energy tensor. We showed that the difference between these
two choices leads to the difference between the (asymmetric) canonical energy tensor and the (symmetric)
Belinfante-Rosenfield energy tensor. When the field equations are combined both methods yield the same
reduced system.

Our second main contribution was a more thorough analysis of sources for torsion. Many, perhaps most,
of the research on ECSK theory or its generalizations to include dynamical torsion have restricted attention
to Dirac fields as sources. This yields a single axial current and totally antisymmetric torsion. This amounts
to only n of the $n? (n — 1) degrees of freedom of the torsion.

We took the opposite approach, considering fields of all spin. Only scalar and Yang-Mills fields fail
to determine nonvanishing torsion. In addition to these we looked at symmetric bosonic kinetic forms and
found all to provide sources for torsion. We studied Dirac and Rarita-Schwinger fields in greater depth. After
reproducing the well-known result for Dirac fields, we developed formalism to describe the spin—% Rarita-
Schwinger field in arbitrary dimension. Surprisingly, in addition dependence on the anticommutator of three
gammas with the spin generator, {v[awbvc],ade}, there is a direct coupling to torsion, ¥, T®. Continuing,
we showed that Rarita-Schwinger fields drive all three independent parts of the torsion: the trace, the
totally antisymmetric part, and the traceless, mixed-symmetry residual. Except in dimensions 5,7, and 9
the Rarita-Schwinger field has enough degrees of freedom to produce generic torsion.

Acknowledgment: The author wishes to thank Joshua Leiter for numerous discussions, including the
Gibbons-Hawking-York boundary term and the independent part of the torsion [47].
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Appendix: Anticommutators

The anticommutator of the generators 0% with any odd number of antisymmetrized s has the form
{,y[llq,yaz . ,7a2k+1],0_de}

We may simplify this by specifying that the a; are all different and d # e. Then we have 0% = 2y9y¢ and
may rearrange the a; in increasing order a1 < a; < a; < a; with the appropriate sign.

With these conditions there are three cases. First, if neither d nor e equals any of the a; then the full
product is antisymmetric.

For the second case, suppose exactly one of e,d equals one of the a;. All other s anticommute. Without
loss of generality let a; = d with e distinct. Then with y%y% = —n9¢ we have

{”y[‘“ oy ”ya%“],ade} = 2y % ekt dae g 9adaeaar a0 a2kt
= (—1)%“71- 2y By (—1) 2y Ly
= (1) (=29M ity 2y Oy )
=0
and this vanishes for all k£.This holds for every instance.

The only reduced term that can occur is when both d and e match some a;,a;. There are two cases:
d=a;,e=a; and d = aj,e = a; where ¢ < j. For the first case

{7[‘“ .. .7“2’”1},0@} = A% Y Bkl g 9adaeaar Al NG Aok
= 29" ... (—1)2k+17i yoind (—1)2k+17j Ak A L
2 (1) Ty (1) Ty

= (—l)iﬂ 477‘“d77aj8”ya1 .. .’yZi .. .’y/‘zﬂ' LA
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where v* indicates omission of y®:.

A

For the second case, d = aj,e = a;, we simply exchange 09¢ = —o°? so we just replace n%dn%¢ —
—n®en%<, Combining both terms

{’7[(11 o ,yak]70,de} = 4 (naidnaje _ najdnaie) (_1)i+j ’Y[al . ,7:\11 . -,y/tjj . -'Yak]

and we have a term like this for each a1 < a; < a; < ay.

Therefore, for any set of fixed a1 < as < ... < ar and d < e, the general result is

{’y[al . .’yak],ade} = 47[‘“ e ”ya’“”yd”ye]
+4 Z (T]aidnaje _ 77zzjdnzzie') (_1)i+j "Y[al N -7ai o ,_Yaj B .,Yak]

ar1<a;<a;<ay A A

The essential feature here is that the anticommutator coupling between 0% and I'?**1 always leads to a
linear combination of I'?**3 and I'**~1 and only these.
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