James T. Struck BA, BS, AA, MLIS's Disproof of Fermat's Last Theorem

James T Struck

Available at: https://works.bepress.com/james_struck/50/
James T. Struck BA, BS, AA, MLIS provided three disproofs of Fermat’s Last theorem using easily available integers like 0 and exponents like 3 showing the theorem to not apply to many cases. Disproofs in many or several cases are a type of disproof of the theorem in general. A mathematician like Pierre Fermat can want to show 0 is not equal to 5 and want a theorem to be disproved. This disproof of the theorem was first argued for on July 22, 2014 and posted on wikipedia.org and Berkeley Press. I therefore have a right to claim the award from the French Academy of Science and Gottingen Academy of Sciences, Belgian Academy of Sciences awards as my mother and I with some French, Belgian, Luxembourg and German ancestry have been abused related to our ancestries for the last 10 years by Cook County and Illinois.

"In number theory, Fermat’s Last Theorem (sometimes called Fermat’s conjecture, especially in older texts) states that no three positive integers \(a, b, \) and \(c \) can satisfy the equation \(a^n + b^n = c^n \) for any integer value of \(n \) greater than two." (wikipedia.org accessed on 7/22/2014)

Andrew Wiles was regarded as providing the first successful proof in 1994-1995. Disproofs of the theorem, which are types of proofs, can easily be constructed.
Disproof #1

Take $n=3$ for a, b, $c=0$,

$0^3 + 0^3=0^3$ as Fermat’s Last theorem is often stated as involving integers. Equation satisfied and Theorem Disproven

Disproof #2

Take $n=\infty$ which can be seen as an integer greater than 2,

$a^\infty + b^\infty = c^\infty$

Yes this disproof involves problems as the infinity comprehension by mathematicians like Georg Cantor showed that we can count infinity, so this would not be an equal statement. Arguably infinity is not an integer as well. Still some mathematicians’ understandings of infinity as beyond countable, like mine, for example, would permit this disproof. Infinity could arguably be an integer as well.

Disproof #3

Take $N=3$, $a=1$, $b=0$, $c=1$,

$1^3 + 0^3= 1^3$, $1=1$ proved positive integers a,b,c can satisfy the equation $a^n + b^n = c^n$
for any integer value of n greater than two. The third disproof would apply to N= any integer greater than 2, so this disproof would involve a large number of disproofs besides the one shown.

Disproof #4
Take N>3, a=1, b=0, c=1 1*4 + 0*4 =1*4 proved integers a, b, c and N>3 can satisfy the equation

\[a^n + b^n = c^n \]

As Fermat's Last Theorem is often stated as involving the integers, these three disproofs of the theorem constitute proofs that the Theorem can be shown false. Just as a mathematician can "Conjecture, 0 is 5 or Conjecture 2=1 million" and want to show that the conjecture is false, Fermat's Last Theorem can be seen as something that can be disproven as a type of proof.

As I provided a reasonable series of disproofs of Pierre De Fermat’s last theorem, I hope to claim the French Academy of Science and Gottingen Academy of Sciences awards as my mother and I with some French, Belgian, Luxembourg and German ancestry have been abused related to our ancestries for the last 10 years by Cook County and Illinois.