Skip to main content
Article
Connecting Phenological Predictions with Population GrowthRates for an Outbreak Insect
Landscape Ecology
  • James A. Powell, Utah State University
  • B. J. Bentz
Document Type
Article
Publication Date
1-1-2009
Disciplines
Abstract

It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a model of population success measured using annual growth rates derived from aerially detected counts of infested trees. This model bridges the gap between phenology predictions and population viability/growth rates for mountain pine beetle. The model is parameterized and compared with 8 years of data from a recent outbreak in central Idaho, and is driven using measured tree phloem temperatures from north and south bole aspects and cumulative forest area impacted. A model driven by observed south-side phloem temperatures and that includes a correction for forest area previously infested and killed is most predictive and generates realistic parameter values of mountain pine beetle fecundity and population growth. Given that observed phloem temperatures are not always available, we explore a variety of methods for using daily maximum and minimum ambient temperatures in model predictions.

Citation Information
Powell, J.A. and B.J. Bentz. 2009. “Connecting Phenological Predictions with Population Growth Rates for an Outbreak Insect.” Landscape Ecology 24: 657-672.