Isolation of Listeria spp. from Feces of Feedlot Cattle

James S. Dickson, United States Department of Agriculture
G. R. Siragusa, United States Department of Agriculture
E. K. Daniels, United States Department of Agriculture
Isolation of Listeria spp. from Feces of Feedlot Cattle

G. R. SIRAGUSA*, J. S. DICKSON, and E. K. DANIELS

Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture1, P.O. Box 166. Clay Center, Nebraska 68933

(Received for publication June 9, 1992)

ABSTRACT

Healthy feedlot beef cattle were surveyed for the presence of Listeria spp. in fecal grab samples taken over 3 months. Composite samples were made from 224 individual animals each month. Listeria monocytogenes was isolated from one composite sample (4%) from the first sampling and not from the subsequent two. Listeria innocua was found in composite samples from all three samplings at levels of 17, 9, and 35%, respectively. From the individual samples comprising the Listeria spp.—positive composites, L. monocytogenes was isolated from one sample (3%) in the second sampling but not in the first or third samplings, L. innocua was found in 9, 8, and 10% of the individual samples comprising Listeria—positive composites in the first, second, and third samplings, respectively. The two L. monocytogenes isolates were pathogenic to mice. Further characterization of these isolates revealed atypical rhamnose fermentation patterns. These results indicate that the frequency of isolation of L. monocytogenes from feedlot beef cattle is low.

The bacterium Listeria is widespread in nature. These organisms are frequently isolated from a large variety of environmental, food, plant, and animal sources (4,7,12). Because recent outbreaks of foodborne listeriosis have been linked to dairy and meat products, attention has been directed to identifying animal reservoirs (Table 1) of listeriae in order to better understand the transmission of the disease (7). Several workers have screened dairy and beef cattle for fecal carriage of the organism (2,9,14,15,17,26). Listeria screening has been reported for swine (2,26,27), sheep (13,20,21), poultry and goats (2,5,9,18). Fecal material is considered to be a major source of pathogen contamination of the final product as well as the processing environment (1). Because data are available on the incidence of L. monocytogenes and Listeria spp. in dairy cows and other red meat animals, this study was done to screen, specifically, feedlot cattle for fecal carriage of L. monocytogenes and Listeria spp.

1 Mention of a trade name, proprietary product, or specific equipment is necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

MATERIALS AND METHODS

Test animals

A total of 224 cattle (Hereford and Angus crossbred steers) were penned in 22 groups of 10 and one group of four in the U.S. Meat Animal Research Center's (MARC) outdoor feedlot complex located in Clay Center, NE. All test animals were clinically healthy and were 9-12 months old at the start of the study which began in March and was carried on for 3 months. Animals were fed a diet of corn-silage (25%), corn (70%), and protein-mineral concentrate (5%). The feed concentrate was supplemented with the ionophore antibiotic monensin.

Experimental design and sampling plan

The animals were sampled once a month for 3 months beginning in March. At the time of each sampling, a fecal grab sample was taken from each animal as it was caught in a chute. Disposable plastic gloves were changed between each animal. The samples were stored in sterile Whirl-Pak bags and held frozen at -20°C until analyzed. Samples were thawed and 10 g of feces from each animal within the pen was combined into a 100-g composite sample in a sterile plastic wide-mouth bottle. Nine hundred milliliters of University of Vermont medium (UVM)-2 broth (BBL Microbiology Systems, Becton Dickinson and Co., Cockeysville, MD) were poured over the sample, mixed by vigorous shaking, then incubated for 24 h at 37°C.

Listeria assays

A sample was considered positive if a Listeria spp. was isolated from either the composite enrichment or the individual enrichment (i.e., culture confirmed). Samples were screened for the presence of Listeria spp. using the Gene-Trak Listeria gene-probe and assay system (Gene-Trak Systems, Framingham, MA). Since this system was not designed for fecal analysis, the initial enrichment was modified by enriching the samples directly in UVM-2 broth as described above. An 0.1-ml aliquot from each enrichment was spread plated onto LiCl-phenylethanol-moxalactam (LPM) agar (BBL Microbiology Systems) and incubated for 48 h at 37°C. Growth from this plate was harvested with 1.0 ml of phosphate-buffered saline (PBS) and processed according to the manufacturer's instruction.

Culture confirmation on the composite samples, which were positive for Listeria spp. in the gene-probe assay, was conducted as follows: (i) an aliquot from the PBS suspension of growth from the LPM plates was streaked onto LPM and/or Listeria selective isolation agar (Oxford formulation, Oxoid Unipath Co., Ogdensburg, NY) and incubated for 24-48 h at 37°C; (ii) at least...
isolated from two samples on two sampling dates (Table 2). The remainder of isolates were identified as either L. innocua or L. welshimeri.

Upon observing a positive result from the gene-probe-based assay of the composite enrichment, the individual fecal samples comprising that composite were thawed out and each individual sample enriched. These assays were done to try to identify a consistent *Listeria* spp. shedder in the pen corresponding to the gene-probe-positive composite sample. Results shown in Table 3 demonstrate that not all sample enrichments could be culture confirmed with the methods used in this study. Seven of 16 gene-probe positive samples were confirmed in both the composite and individual enrichments, whereas only five and six composite and individual enrichments, respectively, could not be culture confirmed.

Of the individual fecal samples enriched, *Listeria* spp. could be isolated from between 8 and 10% of the samples (Table 2). As in the composite enrichment cultures, the other species isolated were either *L. innocua* or *L. welshimeri*.

Table 4 lists the species identification of the isolates made. Characteristics for identification were based on those previously reported (23). *L. monocytogenes* is typically known to ferment rhamnose; however, the two organisms identified as *L. monocytogenes* isolated in this study were both rhamnose negative when tested in both the standard tube format (19) as well as the modified microtiter plate method (25) and the Mini-Tek systems. The isolates belonged to serotype 4 and were positive in the *Listeria*

RESULTS

The frequency of *Listeria* spp. isolated from feedlot cattle feces ranged from 8.7 to 35% (avg. = 22%) of composited samples over a 3-month period (Table 2). *L. monocytogenes* isolation from these same samples ranged from 0 to 4.4% (avg. = 2.2%). *L. monocytogenes* was isolated from two samples on two sampling dates (Table 2). The remainder of isolates were identified as either *L. innocua* or *L. welshimeri*.

Upon observing a positive result from the gene-probe-based assay of the composite enrichment, the individual fecal samples comprising that composite were thawed out and each individual sample enriched. These assays were done to try to identify a consistent *Listeria* spp. shedder in the pen corresponding to the gene-probe-positive composite sample. Results shown in Table 3 demonstrate that not all sample enrichments could be culture confirmed with the methods used in this study. Seven of 16 gene-probe positive samples were confirmed in both the composite and individual enrichments, whereas only five and six composite and individual enrichments, respectively, could not be culture confirmed.

Of the individual fecal samples enriched, *Listeria* spp. could be isolated from between 8 and 10% of the samples (Table 2). As in the composite enrichment cultures, the other species isolated were either *L. innocua* or *L. welshimeri*.

Table 4 lists the species identification of the isolates made. Characteristics for identification were based on those previously reported (23). *L. monocytogenes* is typically known to ferment rhamnose; however, the two organisms identified as *L. monocytogenes* isolated in this study were both rhamnose negative when tested in both the standard tube format (19) as well as the modified microtiter plate method (25) and the Mini-Tek systems. The isolates belonged to serotype 4 and were positive in the *Listeria*

TABLE 1. Frequency of Listeria isolation from domestic animals feces by various workers.

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>L spp.</th>
<th>Lm</th>
<th>Other L spp.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>NR</td>
<td>2/24 (8)</td>
<td>0/24 (0)</td>
<td>2/24 (8)</td>
<td>8</td>
</tr>
<tr>
<td>Cattle</td>
<td>NR</td>
<td>30/52 (58)</td>
<td>10/52 (19)</td>
<td>20/52 (38)</td>
<td>2</td>
</tr>
<tr>
<td>Cattle</td>
<td>D</td>
<td>51/75 (68)</td>
<td>39/75 (52)</td>
<td>21/75 (28)</td>
<td>25</td>
</tr>
<tr>
<td>Cattle</td>
<td>NR</td>
<td>32/300 (11)</td>
<td>32/30 (11)</td>
<td>NR</td>
<td>16</td>
</tr>
<tr>
<td>Cattle</td>
<td>S, D</td>
<td>287/2256 (12)</td>
<td>207/2256 (9)</td>
<td>NR</td>
<td>14</td>
</tr>
<tr>
<td>No S, D</td>
<td>86/1622 (5)</td>
<td>51/1622 (3)</td>
<td>NR</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>Rg</td>
<td>11/61 (18)</td>
<td>11/61 (18)</td>
<td>NR</td>
<td>13</td>
</tr>
<tr>
<td>Chickens</td>
<td>NR</td>
<td>97/2373 (4.1)</td>
<td>97/2373 (4.1)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Goats</td>
<td>Listeric</td>
<td>5/14 (36)</td>
<td>5/14 (36)</td>
<td>NR</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>6/48 (13)</td>
<td>6/48 (13)</td>
<td>NR</td>
<td>17</td>
</tr>
<tr>
<td>Sheep</td>
<td>NR</td>
<td>0/3 (0)</td>
<td>0/3 (0)</td>
<td>0/3 (0)</td>
<td>20</td>
</tr>
<tr>
<td>Sheep</td>
<td>Pre-lamb</td>
<td>2/232 (<1)</td>
<td>2/232 (<1)</td>
<td>NR</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Lamb</td>
<td>74/106 (64)</td>
<td>74/106 (64)</td>
<td>NR</td>
<td>12</td>
</tr>
<tr>
<td>Swine</td>
<td>NR</td>
<td>2/30 (7)</td>
<td>0/30 (0)</td>
<td>2/30 (7)</td>
<td>8</td>
</tr>
<tr>
<td>Swine</td>
<td>NR</td>
<td>48/97 (50)</td>
<td>3/97 (3)</td>
<td>45/97 (46)</td>
<td>2</td>
</tr>
<tr>
<td>Swine</td>
<td>S</td>
<td>7/172 (4)</td>
<td>3/17 (2)</td>
<td>4/172 (2)</td>
<td>26</td>
</tr>
</tbody>
</table>

*Reported management/health conditions. D = dairy animals, S = silage fed, Rg = range fed, Lamb = lambing period, NR = information not reported.
Frequency expressed as Listeria-positive samples/total samples tested.
Percentages are in parentheses. L = *Listeria* spp.; Lm = *L. monocytogenes*; Other L spp. = *L. innocua*, *L. welshimeri*.
Samples from goats in herd with listeriosis. Healthy goats were asymptomatic and from same herd.
TABLE 2. Isolation of Listeria spp. from composite and individual fecal samples from feedlot cattle from March through May.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Number of Listeria-positive samples*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sampling No.</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Listeria spp.</td>
<td>4/23 (17)</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>1/23 (4)</td>
</tr>
<tr>
<td>Other Listeria spp.</td>
<td>4/23 (17)</td>
</tr>
<tr>
<td>Individual</td>
<td></td>
</tr>
<tr>
<td>Listeria spp.</td>
<td>3/34 (9)</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>0/34 (0)</td>
</tr>
<tr>
<td>Other Listeria spp.</td>
<td>3/34 (9)</td>
</tr>
</tbody>
</table>

*Samples were considered positive only after culture method confirmation from either a composite or an individual enrichment. Data are presented as the number of Listeria-positive samples/number total samples. Percentages are in parentheses.

<table>
<thead>
<tr>
<th>Individual (I) or composite (C)</th>
<th>Species</th>
<th>No. isolates</th>
<th>Rhamnose rxn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 3</td>
<td>L. innocua</td>
<td>8 (-)</td>
<td></td>
</tr>
<tr>
<td>C 9</td>
<td>L. innocua</td>
<td>5 (+)</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>L. innocua</td>
<td>9 (-)</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>1 (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 23</td>
<td>L. innocua</td>
<td>10 (-)</td>
<td></td>
</tr>
<tr>
<td>I 84</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 114</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>I 116</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L. monocytogenes</td>
<td>2 (-)</td>
<td></td>
</tr>
<tr>
<td>C 9</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>C 15</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>C 17</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 18</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 20</td>
<td>L. innocua</td>
<td>2 (+)</td>
<td></td>
</tr>
<tr>
<td>C 21</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 23</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>I 33</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 89</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 128</td>
<td>L. innocua</td>
<td>2 (+)</td>
<td></td>
</tr>
<tr>
<td>I 150</td>
<td>L. innocua</td>
<td>2 (+)</td>
<td></td>
</tr>
<tr>
<td>I 167</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 178</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 9</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>C 15</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>C 17</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 18</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>C 20</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>C 23</td>
<td>L. innocua</td>
<td>1 (-)</td>
<td></td>
</tr>
<tr>
<td>I 33</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 89</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 128</td>
<td>L. innocua</td>
<td>2 (+)</td>
<td></td>
</tr>
<tr>
<td>I 150</td>
<td>L. innocua</td>
<td>2 (+)</td>
<td></td>
</tr>
<tr>
<td>I 167</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
<tr>
<td>I 178</td>
<td>L. innocua</td>
<td>1 (+)</td>
<td></td>
</tr>
</tbody>
</table>

Survey totals

L. innocua Rhamnose (+) 24
L. monocytogenes Rhamnose (+) 44
L. welshimeri Rhamnose (+) 3

RESULTS

The frequency of L. monocytogenes found in this population of feedlot cattle is similar to that reported by other workers for cattle, sheep, and swine managed under various other conditions (Table 1). Feeding a high portion of silage or silage of poor quality has been linked to the high incidence of fecal Listeria spp. excretion, as well as the disease listeriosis in animals (8, 12, 20). The cattle in this study were fed corn silage as 25% of their standard diet.

A single consistent fecal Listeria spp. shedder was not found by methods used in this study. Composites made...
from animals in pen 9 were positive in all three samplings, but no individual animal was determined to consistently shed listeriae. Clinically, the health status of all animals remained good throughout the survey.

Isolation of Listeria spp. from feces was not consistent (Table 3). This was probably due to several factors which were compounded by an already low incidence of the organism. These factors include the extremely high microbial load of feces. It is estimated that feces can contain between 10^6 to 10^10 CFU/g of bacteria, and specifically in cattle, between 10^1 to 10^5 Streptococcus spp. per g (3,6). Another factor is freeze-thaw cycling of the samples during the analysis. It has been reported that up to 80% of the populations of L. monocytogenes undergo sublethal cellular injury upon freezing at -18°C (10). Additionally, bacteria which were inhibitory to Listeria spp. were evident by frequently observed zones of inhibition surrounding colonies amongst the background Listeria growth on the LPM Listeria selective agar plates (Fig. 1, photo). Several of these bacteria were isolated and found to be Group D enterococci (“fecal streptococci”). Enterococci are not inhibited by the selective broth used (UVM-2) as evident by their high numbers when the UVM-2 enrichments were plated on KF-Streptococcal agar (data not shown). Only two gene-probe-positive samples were not culturable either from the composite suspension or the individual enrichments (Table 3). A two-stage enrichment procedure may have eliminated this inconsistency.

The inability of the two L. monocytogenes isolates to ferment rhamnose is unusual considering data reported elsewhere (22,23). In their survey of animals and meat samples, Skovgaard and Morgen (26) reported Listeria spp. were isolated from poultry samples with atypical carbohydrate patterns, but the specific irregular reactions were not stated. In the case of L. innocua and L. welshimeri isolates made from enrichments in this study, rhamnose fermentation was variable (23). The significance of this finding is not clear at this point but is noteworthy since the two L. monocytogenes isolates were found to be pathogenic to mice and were from two different composite samples.

The results of this survey give further evidence that the incidence of Listeria spp. in meats is probably due more to the common presence of the organism in processing environments, rather than a high incidence of the organism in live animals (2,11,16,21).

It is interesting that the species of listeriae found most often in this study were isolates of L. innocua. This finding is consistent with most other studies on the incidence of Listeria spp. in meat animals (see Table 1) and red meats (16). The significance of this relationship is not known at this time.

ACKNOWLEDGMENTS

The authors wish to acknowledge Ms. Sandy Fryda-Bradley, Ms. Jane Long, and Ms. Carole Smith for expert technical assistance. We also thank Ms. Marilyn Bierman for assistance in preparing this manuscript.

REFERENCES

ACKNOWLEDGMENTS

The authors thank the National Marine Fisheries Service for financial support provided under Project #CR-4425-425113. We also thank the Louisiana Crawfish Promotion Board for their support of this project.

REFERENCES

Siragusa, Dickson and Daniels, cont. from p. 105

