Iowa State University

From the SelectedWorks of Cassandra M.V. Nuñez

2014

Linking social behavior and stress physiology in feral mares (Equus caballus): Group transfers elevate fecal cortisol levels

Cassandra M.V. Nuñez, Virginia Polytechnic Institute and State University James S. Adelman Jessica Smith, Princeton University Laurence Gesquiere, Princeton University Daniel I. Rubenstein, Princeton University

Feral horses: A special case http://www.maxwaugh.com http://animals.nationalgeographic.com

Feral horses: A special case

Feral horse behavior and social structure

Feral horse behavior and social structure

A day in the life of a feral horse...

Mare reproductive physiology

—— Uncontracepted female

Ovarian activity

Traditional forms of hormonal contraception

Contraception

Immunocontraception Porcine zona pellucida (PZP)

Immunocontraception

Immunocontraception

Changes to mare behavior and physiology

Changes to mare behavior and physiology

Shackleford Banks, North Carolina

- National Park Service
- Foundation for Shackleford Horses

Number of group transfers during study period

Generalized Linear Model; $F_{2,27} = 6.73$, P = 0.004 - PZP treatment, est. = 1.99, t = 2.11, P = 0.04

Changes to mare behavior

Changes to mare behavior

Changes to mare behavior

Changes to mare physiology

Stress physiology

- Steroid hormone

Response to acute physical/social challenge (stress)

Changes to mare physiology

Stress physiology

- Fecal cortisol as a metric of stress level
- Cortisol levels before, during, and after group transfers
- Cortisol levels and the number of group transfers made
- Breeding and non-breeding seasons (June-August and December, 2009)

Cortisol levels and the timing of group transfers

Linear Mixed Effects Model: before vs. during; est. = 7.22, t = 2.33, P = 0.02; before vs. after; est. = 1.90, t = 0.54, P = 0.59; during vs. after; F-test for linear combinations, $F_{1,56}$ = 2.83, P = 0.10

Nuñez et al., Gen. Comp. Endo., 2014

Cortisol levels and the number of group transfers

Linear Mixed Effects Model: 2+ vs. 0 transfers; est. = 9.61, t = 2.58, P = 0.01 2+ vs. 1 transfers; $F_{1, 73}$ = 3.32, P = 0.07; 1 vs. 0 transfers; est. = 0.24, t = 0.07, P = 0.94

Changes to mare physiology

Why should we care?

Why should we care?

Thanks!

Jim Adelman, Virginia Tech
Dan Rubenstein, Princeton University
Jessica Smith, Princeton University
Laurence Gesquiere, Duke University
Jeanne Altmann, Princeton University
Susan Stuska, National Park Service
Carolyn Mason, Foundation for Shackleford Horses
National Science Foundation
Princeton University

Changes to mare behavior

Years pregnant and the number of group transfers

Generalized Linear Model; $F_{1,29} = 10.75$, P = 0.003 - PZP treatment, est. = -3.11, t = -2.79, P = 0.01

Reproductive behavior during study period

Generalized Linear Model; $F_{1,28} = 9.69$, P = 0.004 - PZP treatment, est. = 2.04, t = 2.26, P = 0.03

Foaling date as a proxy for reproductive cycling

- Gestation lasts 11-12 months
- Conception can be reliably estimated from foals' birth date
- Birth dates of foals born before and after contraception management

Number of consecutive PZP applications and foaling date

Linear Mixed Effects Model: est. = 0.83, t = 3.64, $r^2 = 0.65$, P < 0.0008

Linear Mixed Effects Model: est. =0.55, t =2.61, r2 =0.65, P = 0.01

FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN Month

Number of group transfers

Number of group transfers

Foal removal and mare pregnancy

PZP is effective over multiple years

- 1st year, 5.9% pregnancy rate
- 2nd year, 14.0% pregnancy rate
- 3rd year, 32.0% pregnancy rate
- 4th year, 47.5% pregnancy rate

Birth rates on Shacklefo

Current management strategy

(8 controls x 66% PR) + (50 pzp x 6% PR) =

8.24 foals

Contraception every 2nd year

(8 controls x 66% PR) + (25 pzp x 6% PR) + (25 pzp x 14% PR) =

10.26 foals

Contraception every 3rd year

(8 controls x 66% PR) + (13 pzp x 6% PR) + (13 pzp x 14% PR) + (13 pzp x 32%

Number of group changes

Years pregnant

