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The (2,0) vibrational band of the A 2�− − X 2�1/2 transition of platinum nitride, PtN, was
recorded at Doppler-limited resolution using intracavity laser absorption spectroscopy (ILS) and
at sub-Doppler resolution using molecular beam laser induced fluorescence (LIF) spectroscopy.
Isotopologue structure for 194PtN, 195PtN, and 196PtN, magnetic hyperfine splitting due to 195Pt
(I = 1

2 ), and nuclear quadrupole splitting due to 14N (I = 1) were observed in the spectrum.
Molecular constants for the ground and excited states are derived. The hyperfine interactions are
used to illuminate the nature of the A 2�− excited electronic state. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4893703]

INTRODUCTION

The platinum-ligand interaction plays a critical role in
many areas of chemistry. For example, the platinum “trans
effect,” where in square planar Pt(II) chloride compounds lig-
ands trans to the chloride are more easily replaced, is of-
ten exploited in inorganic synthesis. This phenomena is ex-
plained using qualitative arguments involving the σ and π in-
teractions of the Pt-Cl bond.1, 2 Spectroscopic studies of small
gas-phase Pt-containing molecules provide data on molecular
and electronic structure and further insight into the nature of
such interactions. Reactions of Pt-containing molecules pro-
vide a venue for experimentally probing these phenomena and
other facets of catalysis in the absence of difficult-to-control,
and poorly understood, chemical processes such as solvation,
and aggregation.3–5 While these simple model systems will
never fully account for all the details of catalysis, they are
amenable to theoretical calculations, and hence form a con-
ceptual framework for understanding catalysis. Large scale
applications where the Pt–N bond is relevant include NOX re-
duction in car-exhaust catalytic treatments.3 Here we describe
the observation and analysis of a new spectral band of PtN that
occurs near 852 nm. The band is assigned as the (2,0) A 2�−

− X 2�1/2 transition of PtN, where the fine and magnetic
hyperfine structure determines the symmetry and the iso-
topic shifts of the transition energy determine the vibrational
assignment.

A limited amount of experimental work has been re-
ported for PtN. The optical spectrum was first identified in
1994 by Friedman-Hill and Field.6 They observed and an-
alyzed three distinct electronic transitions in the visible re-
gion between 16 500 and 18 600 cm−1. Their work suggested
that the ground state was of 2�1/2 symmetry. Using a laser

a)Author to whom correspondence should be addressed. Electronic mail:
lobrien@siue.edu. Telephone: 618-650-3562.

ablation/molecular beam source, Jung et al.7 recorded, both
field-free and in the presence of a static electric field, the |�|
= 1/2 − X2�1/2 band near 538 nm which had been identi-
fied by Friedman-Hill and Field.6 Jung et al.’s work7 included
a high-level ab initio complete active space self-consistent
field (CASSCF) treatment and first order configuration inter-
action (FOCI) computations on 10 low-lying electronic states
of PtN from which the band was assigned as the (0,0) d 4�1/2
− X 2�1/2 transition. Analysis of the 195Pt (I = 1/2) magnetic
hyperfine structure confirmed that the ground state was in-
deed of X 2�1/2 symmetry. The 14N (I = 1) hyperfine splitting
was not resolved in the work by Jung et al.,7 but the electric
dipole moments for the d 4�1/2 (υ = 0) and X 2�1/2 (υ = 0)
states were determined to be 1.05(11) D and 1.977(9) D,
respectively.

Calculations by Dai and Balasubramanian8 extended
the predictions of Ref. 7 to include 21 electronic states
and applied more accurate multireference singles+doubles
configuration interaction (MRSDCI) methods. Dai and
Balasubramanian8 also included relativistic spin-orbit ef-
fects and predicted the spectroscopic properties of the
first six �-states. The spin-orbit splitting in the X 2�r
state was predicted8 to be 2006 cm−1, with a dominant
(80%) · · · 3σ 21π42π11δ4 electron configuration. Low-lying
4�1/2

− and 2�1/2
− states, with a dominant · · · 3σ 11π42π21δ4

electron configuration, were predicted8 at 889 cm−1 and
3449 cm−1, respectively.

EXPERIMENTAL PROCEDURE

The PtN spectrum was recorded using two methods: mid-
to-high J-lines were recorded at Doppler-limited resolution
using intracavity laser spectroscopy (ILS); low J-lines were
recorded using laser induced fluorescence (LIF) detection
at sub-Doppler resolution in a supersonic molecular beam.
The higher resolution, molecular beam spectra were used to
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characterize the 14N hyperfine interaction and confirm the
spectral assignment determined in the ILS work. For the ILS
work, PtN molecules were produced in a plasma discharge
sputter source with a 50 mm long Pt-lined hollow cathode;
the method is similar to that used by us to produce PtF
molecules.9 The ILS approach used and further details on
creating the plasma diatomic species is provided in Ref. 10.
An applied potential produced a discharge current of 0.5 A
in about 1.6 Torr of argon used as the sputter gas. Nitrogen
gas was used as an oxidant and reacted with the platinum
vapor generated from the cathode. PtN spectra from 11 620
through 11 738 cm−1 were recorded as a series of overlapping
∼6 cm−1 wide spectral segments. The generation time10 var-
ied from 100 to130 μs which results in an effective pathlength
of 0.92–1.2 km for a 50 mm long hollow cathode. Wavelength
calibration was accomplished by alternatively measuring the
spectrum of the intracavity PtN and the Doppler limited I2
absorption spectrum recorded from an extra-cavity iodine cell
heated to approximately 600 ◦C. The iodine atlas was used to
calibrate the spectra.11 Peak positions were determined from
the zero crossing-points of the first derivative spectra using
Savitzky–Golay polynomial smoothing, taking into account
changes in the spectral dispersion across the multi-channel
detector determined from ILS spectra of an intracavity etalon
recorded in separate experiments.12 The procedure enables
the positions for isolated, unblended lines to be determined
to an accuracy of better than ±0.007 cm–1.

The molecular beam production and LIF detection
schemes were similar to that used in the previous study.7 A
continuously rotating platinum rod was ablated in a super-
sonic expansion of approximately 5% ammonia (NH3) seeded
in argon with a backing pressure of approximately 3 MPa.
The pulsed free-jet expansion was skimmed to form a well-
collimated molecular beam which was crossed with a single
longitudinal mode, continuous wave, Ti:Sapphire laser beam
approximately 50 cm downstream from the source. The laser
power was attenuated to approximately 50 mW and lightly fo-
cused (focal length = 1 m) to avoid power broadening. Spec-
tral line widths of less than 40 MHz FWHM were observed.
The absolute wavenumbers were determined to an accuracy
of ±0.003 cm−1 by simultaneously recording the Doppler I2
absorption spectrum.11 Interpolation between I2 absorption
features was achieved by simultaneously recording the trans-
mission of two confocal etalons. One etalon was actively
stabilized and calibrated to have a free spectral range of
753 MHz. A second, unstabilized etalon with a free spectral
range of 75 MHz was used to interpolate between transmis-
sion peaks of the stabilized etalon.

OBSERVATION

The ILS spectrum was recorded in the 11 620–
11 738 cm−1 region. A portion of the ILS spectrum near
11 632 cm−1 is shown in Figure 1. Pronounced isotopologue
structure is observed in the spectrum, and peaks due to the
three most prominent isotopologues (194PtN 33%, 195PtN
34%, and 196PtN 25%) were identified. For each rotational
line, the separation between the outermost 194PtN and 196PtN

FIG. 1. Portion of ILS spectrum of PtN near 11 632 cm−1.

peaks remained nearly constant throughout the spectrum at
about 0.47 cm−1, as displayed in Figure 1. The two smaller,
middle peaks of each transition are the hyperfine components
due to the nuclear spin of 195Pt (I = 1/2), and this split-
ting is rather consistent at approximately 0.12 cm−1 at high
J, although some small variation is observed in the differ-
ent branches. Thus, a unique quartet pattern was observed
throughout the spectrum. The band head at 11 738 cm−1 and
the quartet pattern due to 194PtN, 195PtN, and 196PtN are
shown in Figure 2. Line positions, assignments, and residuals
for all three isotopologues are presented in the supplementary
material.13

The R1(1/2), R1(3/2), R21(1/2), P1(3/2), Q21(J = 1/2 − J
= 9/2), and Q1(J = 1/2 − J = 5/2) branch features of the
(2,0) A 2�− − X 2�1/2 band for the 194PtN isotopologue were
recorded at high resolution using molecular beam LIF detec-
tion. Narrow LIF scans of P1(3/2) (ν = 11 728.728 cm–1) and
Q21(7/2) (ν = 11 731.204 cm−1) branch features are given
in Figure 3 along with the associated energy levels deter-
mined using the optimized molecular constants (vide infra).
The small splitting of each branch feature is due to the 14N (I
= 1) hyperfine interaction. A comparison of various spectral
features shows that the hyperfine interaction is substantial in
both the X2�1/2 (υ = 0) and the A 2�− (υ = 2) states. The

FIG. 2. ILS spectrum of PtN near bandhead at 11 738 cm−1.
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FIG. 3. Narrow LIF scans of P1(3/2) (ν = 11 728.728 cm−1) and Q21(7/2) (ν
= 11 731.204 cm–1) branch features (left) along with the associated energy
levels (right) obtained using the optimized parameters of Table II. The small
splitting of each branch feature is due to the 14N(I = 1) hyperfine interaction.

assignments, observed 14N (I = 1) hyperfine splitting of each
line, and the differences from the calculated splitting for the
28 precisely measured splittings are presented in Table I.

ANALYSIS

Four strong branches were easily identified in the ILS
spectrum. The lower state was assumed to be the ground
X 2�1/2. 
2F and 
1F values for the ground state were pre-
dicted using the molecular constants from Jung et al.7 and

differences between the observed branches were tested in or-
der to obtain rotational assignments. Ultimately the observed
features were securely identified as the members of the R21,
Q21, Q1, and P1 branches, confirming that the lower electronic
state is X 2�1/2 (υ = 0). Based on the initial fits of the 194PtN
lines, the weaker R1 and P21 branches were predicted and sub-
sequently identified for the 194PtN and 196PtN isotopologues.

There are two possibilities for the symmetry of the ex-
cited electronic state, either 2�+ or 2�−, and the data were
fit both ways. The main difference in the excited state en-
ergy levels is the value of the spin-rotation parameter which
we found to be γ (2�+) = 1.628 cm−1 or γ (2�−) = 0.0398
cm−1. Previous calculations7, 8 predict a relatively low density
of low-lying electronic states which suggest that the excited
state γ value should be small, which supports the assignment
of the observed spectrum as the A 2�− − X 2�1/2 transition.
The analysis of the 195Pt (I = 1/2) magnetic hyperfine struc-
ture (vide infra) also supports the assignment of the excited
state to be of 2�− symmetry.

Using vibrational frequencies calculated at the MRSDCI-
level8 for the A2�− and X 2�1/2 states and the isotopologue
relationships,14 shifts for several possible excited state vibra-
tional level assignments were predicted. The calculated origin
shifts for the 194PtN and 196PtN isotopologues for the (0,0),
(1,0), (2,0), and (3,0) bands of the A 2�− − X 2�1/2 transi-
tion are −0.03, 0.21, 0.45, and 0.69 cm−1, respectively. The
observed origin shift of ∼0.47 cm−1 clearly supports the (2,0)
vibrational band assignment for the transition.

Ultimately, the final fits of the Doppler limited ILS spec-
tra were performed using PGOPHER 7.1.108,15 with a sepa-
rate fit for each isotopologue. The Hamiltonian utilized in the
PGOPHER program can be separated into several standard
components:16

Ĥrot = B N̂
2 − D N̂

4 + H N̂
6
, (1)

TABLE I. The assignments, observed 14N hyperfine splitting, and the differences from the calculated splitting in (MHz) of the 194PtN isotope in the (2,0)
A 2�− − X 2�1/2 band.

Splitting Splitting
Aa Ba A-B (MHz) Aa Ba A-B (MHz)

Line F′′ F′ F′′ F′ Obs. Diff. Line F′′ F′ F′′ F′ Obs. Dif.

Q1(1/2) 1.5 1.5 0.5 0.5 30 − 2 Q21(3/2) 1.5 1.5 2.5 2.5 94 0
1.5 0.5 0.5 1.5 30 2 0.5 0.5 1.5 1.5 47 − 9

Q1(3/2) 2.5 2.5 1.5 1.5 52 6 2.5 1.5 2.5 2.5 64 1
Q1(5/2) 3.5 3.5 2.5 2.5 45 − 3 Q21(5/2) 2.5 2.5 3.5 3.5 79 3

2.5 2.5 1.5 1.5 39 5 1.5 1.5 2.5 2.5 56 1
2.5 1.5 1.5 1.5 15 − 1 3.5 2.5 3.5 3.5 48 − 3
3.5 2.5 2.5 2.5 22 1 2.5 1.5 2.5 2.5 32 − 5

P1(3/2) 0.5 1.5 1.5 2.5 41 8 Q21(7/2) 3.5 3.5 4.5 4.5 73 3
0.5 0.5 0.5 1.5 34 − 5 2.5 2.5 3.5 3.5 54 0
1.5 1.5 0.5 1.5 34 4 Q21(9/2) 4.5 4.5 5.5 5.5 69 3
1.5 0.5 2.5 1.5 98 − 6 3.5 3.5 4.5 4.5 50 − 4
0.5 0.5 2.5 1.5 94 4 R21(1/2) 1.5 1.5 2.5 1.5 30 1

Q21(1/2) 0.5 1.5 1.5 1.5 48 − 1 R1(3/2) 2.5 1.5 3.5 2.5 43 2
0.5 0.5 1.5 0.5 48 − 1 1.5 0.5 2.5 1.5 22 0

Std. dev. = 4 MHz

aThe “A” and “B” components are the higher and lower frequency spectral features, respectively, associated with a given measured splitting. For example, the first row under the
Q21(7/2), entries are the quantum numbers for the “A” and “B” spectral features given in Figure 3 and the measured splitting between these two lines.
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TABLE II. Molecular constants for the A 2�− (υ = 2) and X 2�1/2 (υ = 0) states of 194PtN, 195PtN, and 196PtN (in cm−1 except where indicated). (One std.
dev. in parenthesis).

Tv B D × 107 p+2q pD × 107 h1/2(195Pt) d(195Pt) h1/2(14N) d(14N)

X 2�1/2 υ = 0 194PtN 0.0a 0.453 312(30) 4.05(14) 0.123 730(90) 6.91(73) 64(2) MHz 62(3) MHz
195PtN 0.0a 0.453 120 8a 3.63(11) 0.123 790(67) 5.43(65) 0.0639a −0.0034a

196PtN 0.0a 0.452 929(38) 3.33(19) 0.123 81(10) 4.42(84)
Lit.b 0.4541(7) 0.1219(15)

Tv B D × 107 γ γ D × 106 b(195Pt) c(195Pt) bF(14N) c(14N)
A 2�− υ = 2 194PtN 11 731.117 14(69) 0.396 911(30) 4.79(13) − 0.041 33(11) 5.570(98) 20(2) MHz −58(6) MHz

195PtN 11 730.855 49(62) 0.396 736 3(19) 4.39(10) − 0.041 509(93) 5.610a 0.2307(14) 0.0777(56)
196PtN 11 730.587 21(77) 0.396 569(38) 4.12(18) − 0.041 62(14) 5.65(11)

aValue held constant in fit, see text.
bFrom Jung et al.7

Ĥspin orbit = AL̂zŜz (2� only), (2)

Ĥspin rotation = γ N̂ · Ŝ + 1

2
γD[N̂ · Ŝ, N̂

2
]+ (2� only),

(3)

Ĥλ doubling = −1

2
p(N̂+Ŝ+e−2iφ + N̂−Ŝ−e+2iφ)

+ 1

2
q(N̂2+e−2iφ + N̂2−e+2iφ)

− 1

4
pD[N̂+Ŝ+e−2iφ

+ N̂−Ŝ−e+2iφ, N̂
2
]+ (2� only), (4)

Ĥmagnetic dipole = a Î · L̂ + bF Î · Ŝ + c/3(3ÎzŜz − Î · Ŝ)

− 1

2
d(Ŝ+Î+e−2iφ + Ŝ−Î−e+2iφ), (5)

Ĥelectric quadrupole = eQq0

4 Î(2 Î − 1)

(
3Î 2

z − Î
2)

. (6)

The data is restricted to only the |�| = 1/2 spin-orbit
component of the A2� state. Hence, only the linear combina-
tion of the �-doubling parameters, p + 2q, is determinable.
Furthermore, only the effective magnetic hyperfine interac-
tions parameter, h1/2, and the parity dependent term, d, are de-
terminable. The effective parameter h� is related to the Frosch
and Foley17 parameters by h� = a� + (b+c)�,18 where �

and � are the molecular fixed axis projection of the total elec-
tronic orbital and spin angular momenta, respectively.

Fits of the 194PtN and 196PtN line positions were straight-
forward, and the molecular constants determined from the fits
are presented in Table II. For the X2�1/2 state, the B0 values
for these two isotopologues are consistent with the isotopo-
logue relationships14 within the experimental uncertainty. The
molecular constants of the X 2�1/2 state from Jung et al.7 are
also included in Table II for comparison. In our work, as in
the Jung et al.7 analysis, the ground state X 2� term energy
was set to 1000 cm−1 and the spin-orbit constant held fixed
at +2000 cm−1. This sets the term energy of υ = 0 of the X
2�1/2 state at T0 = 0 cm−1.

The 195PtN lines show well-resolved magnetic hyperfine
structure in the ILS spectra due to the 195Pt isotope (I = 1/2),
with the majority of the features being assigned as 
F = 
J.

Two distinct hyperfine patterns are evident in the spectrum:
the R21 and Q21 lines gave similar splittings, and the P1 and
Q1 lines gave similar splittings. This indicates that the mag-
netic hyperfine structure was mainly in the excited state. Ini-
tially, the analytical expressions of Townes and Schawlow18

for the diagonal matrix elements of Ĥhyperf ine in a Hund’s
case (bβJ) basis were used to model the hyperfine structure at
high J values. Based on the splitting of the hyperfine compo-
nents at high J, an estimate of b(A 2�) = ±0.23 cm−1 was
obtained.

The LIF spectrum of the R21(0.5) line was used to con-
firm the symmetry of the excited 2� state. As shown in Fig-
ure 4, the two main hyperfine components of the R21(0.5)
line with 
F = 
J were observed at 11 732.4367 and
11 732.5873 cm−1, with the lower energy component weaker
in intensity. Since the intensity is proportional to the degen-
eracy of the levels, the weaker transition is assigned as F′

= 1e← F′′ = 0e, and the stronger transition is assigned as
F′ = 2e ← F′′ = 1e. With this assignment, the sign of bF
was determined to be negative, which is not consistent with a
2�+ state with a single, unpaired σ electron. Observation of
two satellite lines, the R21(0.5) with F′ = 1e ← F′′ = 1e at ν

= 11 732.389 cm−1 and the S1(0.5) line with F′ = 2f ← F′′

= 1e at ν = 11 732.3095 cm−1, provides further support for

FIG. 4. Narrow LIF scan near the 195PtN R21(0.5) branch feature. The total
angular moment F′ and F′′ values are labelled for each peak associated with
the 195PtN hyperfine structure.
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the rotational and hyperfine assignments and the excited state
symmetry.

The 195PtN isotopologue data set includes four regular
branches with 
F = 
J, plus two RS1(J) satellite lines with

F = +1 at low J. The molecular constants from the initial
fits exhibited high correlation and their uncertainties were sig-
nificantly higher than those of the 194PtN and 196PtN param-
eters. To improve the fit, the ground state B0 value for 195PtN
was fixed to that predicted from the 194PtN B0 value using the
isotopologue relationships14 and the excited state γ D value
was held fixed at the average of the γ D values for 194PtN and
196PtN. In the final fit, the ground state hyperfine parameters
were constrained to the previously determined values.7 These
conditions resulted in an acceptable fit for the line positions,
with a standard deviation of <0.008 cm−1 for the ILS data and
<0.004 cm−1 for the LIF data. The fitted molecular constants
for 195PtN are given in Table II.

The small 14N splitting observed in the molecular beam
LIF spectrum of 194PtN was modelled using a separate pro-
gram written specifically for this project. The eigenvalues
and eigenvectors were obtained by diagonalization of ma-
trix representations with dimensions of 12 (=2 × (2S + 1)
× [2I(14N) + 1]) for the X 2�1/2 (ν = 0) state and 6 (=2
× (2S + 1) × [2I(14N) + 1]) for the A 2�− (υ = 2) state, con-
structed in the Hund’s case (aβJ) basis set. The fine structure
parameters were held fixed to the values determined from the
analysis of the 194PtN ILS data. The X 2�1/2 (υ = 0) hyperfine
energies were modelled with h1/2 and d terms and those for
the A 2�− (υ = 2) state with the b and c terms. The small nu-
clear quadrupole interactions were not required. The 28 spec-
tral splittings of Table I were used as input for a nonlinear
least squares fitting procedure. The optimized parameters and
associated errors are given in Table II. The standard deviation
of the 14N splitting was 4 MHz which is consistent with the
measurement uncertainty.

DISCUSSION

The molecular orbital correlation diagram shown in Fig-
ure 5 was developed using a Fenske-Hall type calculation19

to assist in the qualitative interpretations of the spectroscopic
parameters. It is similar to the one used to explain the relative
values of the electric dipole moment in the PtX (X = C, N, O,
and S) series of molecules.20 Analysis of the composition of
the predicted molecular orbitals7, 8 shows that the 2π orbital is
primarily a Pt(5dπ )-N(2pπ ) anti-bonding orbital whereas the
3σ orbital is a mixture of the Pt(5dσ ), Pt(6sσ ), and N(2pσ )
orbitals. The relative contributions of these three atomic or-
bitals to the 3σ molecular orbital vary significantly with the
electronic state.7, 8

The molecular orbital correlation diagram indicates that
the X 2�r state arises from a dominant · · · 3σ 22π1 electronic
configuration, which has been predicted through high-level
ab initio calculations,7, 8 predicted from more recent density
functional calculations,21 and confirmed experimentally.6, 7

The molecular orbital correlation diagram indicates that the
first excited electronic configuration is · · · 3σ 12π2, which
gives rise to Hund’s case (a) 4�−, 2�−, 2
, and 2�+

states. The low-lying a 4�− (Te = 889 cm−1) and A 2�−

FIG. 5. Molecular orbital correlation diagram for the ground state of PtN.

(Te = 3449 cm−1) states predicted from the high-level
ab initio calculations7, 8 do indeed have a dominant
· · · 3σ 12π2 configuration.

Based upon the observed isotopic shifts, the present spec-
trum is assigned as the (2,0) A 2�− − X 2�1/2 transition. The
bond length in the υ = 2 A 2�−state, r2 = 1.803 Å, is sig-
nificantly longer than that for the υ = 0 × 2�1/2 state where
r0 = 1.687 Å. The lengthening of the bond upon 3σ → 2π

excitation is consistent with a promotion of an electron from
the non-bonding 3σ -orbital to the anti-bonding 2π orbital
as implied by the molecular orbital correlation diagram,
Figure 5.

Using the calculated vibrational frequency,8 ωe
(=696 cm−1), the experimental term energy, Te, for the
A 2�− state is estimated to be Te(A 2�−) ≈ 10 300 cm−1

above the X 2�1/2 state. The ab initio prediction,8 which did
not include treatment of the spin-orbit interaction, predicts
a Te (=3449 cm−1) which is significantly less than the
estimated Te(A 2�−) ≈ 10 300 cm−1 obtained here. The
effects of the ignored Pt spin-orbit interaction for the states
investigated in Ref. 8, however, are large. Consider, for
example, the changing Te value of the a 4�− state, for which
spin-orbit interaction was treated in the calculations: in the
absence of spin-order interaction, Te(a 4�−) is calculated to
be 975 cm−1, yet the relativistic CI calculation of the lowest
excited � = 1

2 state, which is 88% 4�−, predicts Te(a 4�−) =
5072 cm−1. The a 4�− and A 2�− states arise from the same
dominant · · · 3σ 12π2 configuration and it can be inferred
that the true Te value of the A 2�− state will be significantly
higher than the Te (=3449 cm−1) calculated in the absence of
spin-orbit interaction. The 6s orbital is strongly stabilized via
relativistic effects22 and the separation between the A 2�−

and the X 2� states is expected to be underestimated when
relativistic effects are not included because the 3σ→2π

excitation is essentially a promotion of a 6s electron.
The 195Pt (I = 1/2) hyperfine parameters provide the

most detailed experimentally derived information about the
nature of the X 2�1/2 and A2�− states. Unfortunately, these
parameters are rarely predicted in ab initio studies because
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they depend upon very accurate electronic wavefunctions in
the region of the nuclei. The common practice is to use an
“atoms-in-molecules” approach that uses experimentally or
theoretically derived atomic hyperfine information and a pro-
posed atomic orbital composition of the relevant molecu-
lar orbitals. This approach was used successfully to provide
a qualitative interpretation of the hyperfine structure in the
X 2�1/2 state of platinum nitride, PtN, by Jung et al.,7 and
more recently for the hyperfine interaction of the X 2�3/2 state
of platinum monofluoride, PtF.23

In the case of the A2�− state, which has no electronic
orbital angular momentum, only the Fermi contact and dipolar
contributions of Eq. (6) are relevant. The Fermi contact, bF,
and dipolar, c, parameters are defined as17, 24

bF/Hz =
( μ0

4πh

)(
8π

3

)
gegNμBμN

1

�

×〈�,� = S|
∑

i

ŝziδi(r)|�,� = S〉, (7)

c/Hz =
( μ0

4πh

) 3

2
gegNμBμN

1

�

×〈�,� = S|
∑

i

ŝzi

(3 cos2 θi − 1)

r3
i

|�,� = S〉.

(8)

In Eqs. (7) and (8), ŝzi is the spin angular momentum op-
erator for the ith electron, δi(r) is a Dirac delta function, and r
and θ are polar coordinates. The 1

�
factors in Eqs. (7) and (8)

account for the fact that the effective Hamiltonian used to fit
the data was written in terms of total spin and orbital angular
momenta, whereas the definitions of bF and c are from inte-
grals of one-electron operators. The symmetry adapted wave-
function for a 2�−(π2σ ) state is the linear combination of
Slater determinants25

ψ(2�−[π2σ ]) = 1√
6

(2
∣∣π+π−σ̄

∣∣ − ∣∣π+π̄−σ
∣∣ − ∣∣π̄+π−σ

∣∣),
(9)

where, for example, π̄+ is the π , λ = +1, ms = −1 spin-
orbital. The expectation value that appears in bF is readily ob-
tained using the rules for evaluation of Slater determinants,26

resulting in

bF = −1

3

(
95.4129 MHz/a.u.3

)
gI

8π

3
〈3σ | δ(0) |3σ 〉

= −1

3

(
95.4129 MHz/a.u.3

)
gI

8π

3
|�(0)|2 , (10)

where |�(0)|2 is the spin-density at the Pt-nucleus, and the
conversion factor, 95.4129 MHz/a.u.–3, assumes that the unit
for the expectation value is a.u.−3 Similarly, the dipolar pa-
rameter is given as

c = +4

3
×(95.4129 MHz/a.u.3)×gI×〈2π |3 cos2 θ − 1

r3
|2π〉.

(11)
Estimates for the expectation values that appear in the ex-

pressions for bF and c can be derived from atomic magnetic
hyperfine information if it is assumed that the 2π and 3σ or-

bital are pure Pt-centered 5d±1 and 6s orbitals, respectively.
Within a single nlnn′s configuration (e.g., 5d96s1 of Pt), the
atomic magnetic hyperfine operator is27, 28

Ĥmhf =
N∑

i=1

[
l̂ ia

01
nl − (10)1/2(ŝ,Ĉ

2
)l
ia

12
nl + ŝia

10
nl

]
· Î

+ a10
n′s′ ŝn′ · Î, (12)

where l̂i , (ŝ,Ĉ2)l
i, and ŝi are the orbital, spin dipolar, and spin

operators for the electrons with orbital angular momenta, and
ŝn′ is the electron spin operator for the unpaired s-electron.
The four effective atomic hyperfine parameters, a01

nl , a12
nl , a10

nl ,
and a10

n′s are defined as

a
ij
nl = 95.4128(MHz/a.u.−3)gI〈r−3〉ij

nl (13)

and

a10
n′s = 95.4128(MHz/a.u.−3)gI〈r−3〉10

n′s, (14)

where the conversion factor assumes that the units for 〈r−3〉ij
nl

and 〈r−3〉10
n′s are a.u.−3. In the nonrelativistic limit, 〈r−3〉10

n′s
= 8π

3 |�n′s(0)|2. Under the assumption that the 2π and 3σ or-
bitals are pure Pt-centered 5d±1 and 6s orbitals, respectively,
then

bF = −1

3

(
95.4129 MHz/a.u.3

)
gI〈r−3〉10

6s (15)

and

c = +4

3
× (

95.4129 MHz/a.u.3
)

gI
2

7
〈r−3〉12

5d. (16)

The 2/7 factor in Eq. (16) is the expectation value
〈d±1|(3cos 2χ − 1)|d±1〉.

Büttgenbach et al.29 simultaneously modelled 11 atomic
hyperfine A factors for levels arising from the 5d96s1 and
5d86s2 configurations of atomic Pt, three of which were
precisely measured by atomic beam magnetic resonance
(ABMR) techniques and the remaining 8 less precisely by
optical spectroscopy, to determine 〈r−3〉01

5d , 〈r−3〉12
5d , 〈r−3〉10

5d ,
and 〈r−3〉10

n′s of 11.01 a.u.–3, 4.26 a.u.−3, −2.29 a.u.−3, and
256.7 a.u.−3, respectively. It was assumed that 〈r−3〉ij

nl for
the 5d86s2 and 5d96s1 configurations were identical. Soon
thereafter, Neu et al.30 re-measured the optical spectrum
and performed an analysis similar to that of Büttgenbach
et al.29 to determine values for 〈r−3〉01

5d , 〈r−3〉12
5d , 〈r−3〉10

5d ,
and 〈r−3〉10

n′s of 10.51 a.u.−3, 12.78 a.u.−3, 0.25 a.u.–3, and
264 a.u.−3, respectively. An ab initio31 calculation employ-
ing an Optimized Hartree-Fock Slater (OHFS) method pre-
dicted 〈r−3〉01

5d , 〈r−3〉12
5d , 〈r−3〉10

5d , and 〈r−3〉10
n′s of 12.389 a.u.−3,

15.633 a.u.−3, −1.404 a.u.−3, and 273.3 a.u.−3, respec-
tively. The atomic values of Refs. 29–31 for 〈r−3〉10

6s sub-
stituted into Eq. (15) predict a bF value of −9952 MHz,
−10 224 MHz, and −10,568 MHz, respectively. Simi-
larly, the atomic values of Refs. 29–31 for 〈r−3〉12

5d sub-
stituted into Eq. (16) predict a c value of +189 MHz,
+566 MHz, and +660 MHz, respectively. The atomic value
for 〈r−3〉12

5d from Ref. 29 appears to be inconsistent with the
other two.
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The simple atoms-in-molecule prediction of a larger neg-
ative 195Pt bF ∼ −10 000 MHz is consistent with the obser-
vation value of −8559 ± 45 MHz. The ab initio prediction8

indicates that the (υ = 2) A 2�− state has a dominant (84%)
· · · 3σ 12π2 electron configuration, but, as mentioned above,
did not include treatment of spin-orbit interaction. If it as-
sumed that the other configurations do not contribute to bF,
then the simple model prediction for bF is ∼ −8400 MHz
(= −10 000 MHz × 0.84), suggesting that the 3σ orbital is es-
sentially 100% 6s character. It is noteworthy that the Mulliken
population analysis8 predicts a gross population for Pt(6s) of
0.862 for the A 2�− state.

The simple atoms-in-molecule model predicts a small,
positive, c parameter (∼600 MHz), whereas the experimen-
tally determined value is a small, poorly determined, nega-
tive value of −0.028 ± 0.010 cm−1 = −840 ± 300 MHz. It
was noted in the ab initio predictions7, 8 that the 2π orbital
is strongly polarized towards the N-center (i.e., has a major
2p(N) contribution), which is not accounted for in the sim-
ple prediction performed here. Furthermore, an admixture of
Pt(6p±1) to the 2π orbital, which has been assumed to be
a pure Pt-centered 5d±1 in the present analysis, could pro-
duce a negative c parameter because 〈p±1|(3cos 2χ − 1)|p±1〉
= −2/5.

The 14N hyperfine parameters are very well determined
for both X 2�1/2 and A 2�−states (see Table II). In the
X 2�1/2 state, h1/2(14N) and d(N) are determined to be 64
± 2 MHz and 62 ± 3 MHz, respectively. The proposed domi-
nant · · · 3σ 22π1 electronic configuration suggests that bF = 0
and therefore h1/2 = a − c/3. Assuming that the sole unpaired
electron occupies the N–centered 2p±1 orbital, the a parame-
ter is given by

a(X2�1/2)(Hz) =
( μ0

4πh

)
2gNμBμN

〈
2p±1

∣∣ r−3
∣∣2p±1

〉
.

(17)

An expression analogous to Eq. (8) was used to predict
the c parameter. Assuming that the 2π orbital is a pure N-
centered 2p±1 and using the ab initio predicted value of
3.0997 a.u.−3 for 〈2p|r−3|2p〉 given in Ref. 32, then a(X2�1/2)
and c(X2�1/2) parameters are calculated to be 118 MHz
and −81 MHz, respectively. Combining c and a, the simple
molecular orbital model predicts that h1/2(14N) = 144 MHz.
The predicted Mulliken population analysis8 indicates that
the 2π orbital is only 36% of the N-centered 2p±1 orbital
in the bonding. Thus, the atoms-in-molecule prediction, cou-
pled with the ab initio Mulliken population, gives h1/2(N) of
52 MHz, which is in good agreement with the observed value
of 63 MHz. Basically, the simple model predicts a small pos-
itive value for h1/2(14N) for the X 2�1/2 state, which is consis-
tent with the observation.

The 14N hyperfine parameters bF and c for the A 2�−

state are determined to be 20 ± 2 MHz and −58 ± 6 MHz,
respectively. The proposed dominant · · · 3σ 12π2 configura-
tion for the A 2�− state would, according to Eq. (10), pre-
dict a small negative value for bF if the 3σ had a signif-
icant contribution from either the N-centered 2s or 3s or-
bitals. The observed small positive value can be rational-
ized as spin–polarization of the Pt-N bond by the Pt-centered

unpaired electrons. Using Eq. (11), the ab initio predicted
value of 3.0997 a.u.−3 for 〈2p|r−3|2p〉 from Ref. 32, and
〈p±1|(3cos 2χ − 1)|p±1〉 = −2/5, c is predicted to be −64
MHz. A comparison with the observed value of −58 ± 6 MHz
suggests that the 2π orbital is strongly polarized towards the
N–center (i.e., has a major 2p(N) contribution) as noted in the
ab initio predictions.7, 8 Basically, the simple model predicts
a small negative c(14N) for the A 2�− state, which is not con-
sistent with the observation.

CONCLUSIONS

The electronic structure properties of PtN have been well
characterized by both intracavity laser spectroscopy and high-
resolution molecular beam laser induced fluorescence. For
the ground state, the determined X 2�1/2 parameters are in
good agreement with the previous measurement.7 The 14N
hyperfine parameters were determined experimentally for the
first time. A simple molecular-orbital based model predicts a
small positive value for effective magnetic hyperfine param-
eter h1/2(14N) for the X 2�1/2 state, which is consistent with
observation.

The excited state associated with the near infrared elec-
tronic transition has been assigned as the υ = 2 level of the
A 2�− electronic state. The origin of this state is not well
predicted by the previous electronic structure calculation.8

The 195Pt and 14N magnetic hyperfine interactions in the υ

= 2 A 2�− state have been determined and used in a sim-
ple “atoms-in-molecule” model to garner insight into the na-
ture of the A 2�− electronic state. The hyperfine parameters
are consistent with a dominant · · · 3σ 11π42π21δ4 configu-
ration for the A 2�− electronic state. A comparison of the
observed bF(195Pt) and c(14N) magnetic hyperfine parameters
with those predicted by the simple model suggest that the
3σ orbital has 82% Pt-centered 6s character and the 2π or-
bital is nearly pure N-centered, which is in qualitative agree-
ment with the molecular orbital correlation diagram and the
ab initio predictions.7, 8

Magnetic hyperfine interactions are the most sensitive
probe of the electronic wavefunction, particularly in the re-
gion of the nuclei with non-zero spin. Hence, a comparison
of experimentally derived values with those predicted from
ab initio calculations is an ideal method for assessing vari-
ous computational methodologies. Predicting the values for
the magnetic hyperfine parameters determined in the present
study for the simple, two nuclear spin, diatomic molecule PtN
should be the goal of future electronic structure studies.
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