Skip to main content
Article
Block Stanley Deompositions II. Greedy Algorithms, Applications and Open Problems
Mathematics Publications
  • James Murdock, Iowa State University
  • Theodore Murdock
Document Type
Article
Disciplines
Publication Version
Submitted Manuscript
Publication Date
6-26-2017
Abstract
Stanley decompositions are used in applied mathematics (dynamical systems) and sl2 invariant theory as finite descriptsions of the set of standard monomials of a monomial ideal. The block notation for Stanley decompositions has proved itself in this context as a shorter notation and one that is useful in formulating algorithms such as the "box product." Since the box product appears only in dynamical systems literature, we sketch its purpose and the role of block notation in this application. Then we present a greedy algorithm that produces incompressible block decompositions (called "organized") from the monomial ideal; these are desirable for their likely brevity. Several open problems are proposed. We also continue to simplify the statement of the Soleyman-Jahan condition for a Stanley decomposition to be prime (come from a prime filtration) and for a block decomposition to be subprime, and present a greedy algorithm to produce "stacked decompositions," which are subprime.
Comments

This is a preprint produced by James Murdock & Theodore Murdock (2017).

Copyright Owner
The Authors
Language
en
File Format
application/pdf
Citation Information
James Murdock and Theodore Murdock. "Block Stanley Deompositions II. Greedy Algorithms, Applications and Open Problems" (2017)
Available at: http://works.bepress.com/james-murdock/1/