Skip to main content
Article
Development of Numerical Model for Predicting Heat Generation and Temperatures in MSW Landfills
Waste Management
  • James L. Hanson, California Polytechnic State University - San Luis Obispo
  • Nazli Yesiller, California Polytechnic State University - San Luis Obispo
  • Michael T. Onnen, California Polytechnic State University - San Luis Obispo
  • Wei-Lien Liu, CTI Associates
  • Nicolas K. Oettle, University of California - Berkeley
  • Janelle A Marinos, Shannon and Wilson, Inc
Publication Date
10-1-2013
Abstract

A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes.

Citation Information
James L. Hanson, Nazli Yesiller, Michael T. Onnen, Wei-Lien Liu, et al.. "Development of Numerical Model for Predicting Heat Generation and Temperatures in MSW Landfills" Waste Management Vol. 33 Iss. 10 (2013) p. 1993 - 2000
Available at: http://works.bepress.com/jahanson/30/