Skip to main content
Article
Application of artificial neural network in flow and transport simulations
Advances in Water Resources
  • J. Morshed
  • J. J. Kaluarachchi, Utah State University
Document Type
Article
Publication Date
10-1-1998
DOI
10.1016/S0309-1708(98)00002-5
Abstract
Artificial neural network (ANN) is considered to be a powerful tool for solving groundwater problems which require a large number of flow and contaminant transport (GFCT) simulations. Often, GFCT models are nonlinear, and they are difficult to solve using traditional numerical methods to simulate specific input–output responses. In order to avoid these difficulties, ANN may be used to simulate the GFCT responses explicitly. In this manuscript, recent research related to the application of ANN in simulating GFCT responses is critically reviewed, and six research areas are identified. In order to study these areas, a one-dimensional unsaturated flow and transport scenario was developed, and ANN was used to simulate the effects of specific GFCT parameters on overall results. Using these results, ANN concepts related to architecture, sampling, training, and multiple function approximations are studied, and ANN training using back-propagation algorithm (BPA) and genetic algorithm (GA) are compared. These results are summarized, and appropriate conclusions are made.
Citation Information
J. Morshed and J. J. Kaluarachchi. "Application of artificial neural network in flow and transport simulations" Advances in Water Resources Vol. 22 Iss. 2 (1998) p. 145 - 158
Available at: http://works.bepress.com/jagath-kaluarachchi/78/