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ABSTRACT

Functional brain imaging with nonfluent aphasia patients has
shown increased cortical activation (perhaps ‘‘overactivation’’) in right (R)
hemisphere language homologues. These areas of overactivation may
represent a maladaptive strategy that interferes with, rather than promotes,
aphasia recovery. Repetitive transcranial magnetic stimulation (rTMS) is a
painless, noninvasive procedure that utilizes magnetic fields to create electric
currents in discrete brain areas affecting about a 1-cm square area of cortex.
Slow frequency, 1 Hz rTMS reduces cortical excitability. When rTMS is
applied to an appropriate cortical region, it may suppress the possible
overactivation and thus modulate a distributed neural network for language.
We provide information on rTMS and report preliminary results following
rTMS application to R Broca’s area (posterior, R pars triangularis) in four
stroke patients with nonfluent aphasia (5–11 years after left hemisphere
stroke). Following 10 rTMS treatments, significant improvement in naming
pictures was observed. This form of rTMS may provide a novel, comple-
mentary treatment for aphasia.
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Learning Outcomes: As a result of this activity, the participant will be able to: (1) describe some characteristics

and background about repetitive transcranial magnetic stimulation (rTMS); (2) describe the rationale for use of this

novel technology to help improve speech and naming in stroke patients with aphasia; and (3) describe the type of

improvement observed in chronic aphasia patients treated with rTMS, and why it would be appropriate to

consider as a complementary treatment for aphasia.

Repetitive transcranial magnetic stimula-
tion (rTMS) has been used in a growing num-
ber of research laboratories worldwide since
1985. It is being investigated as a novel inter-
vention to treat disorders such as depression,
Parkinson’s disease, dystonia (writer’s cramp),
and epilepsy. Our ongoing research explores
whether rTMS can also be applied to help treat
stroke patients with aphasia as a complemen-
tary treatment to current speech/language
therapies.

BACKGROUND OF TMS
TMS is a noninvasive procedure that utilizes
magnetic fields to create electric currents in
discrete brain areas (for review, see Pascual-
Leone and associates1 and Walsh and Pascual-
Leone2). TMS involves discharging a current
through a coil of copper wire that is held over
the subject’s scalp. The current pulse flowing
through the coil generates a rapidly fluctuating
magnetic field that penetrates the scalp and
skull unimpeded and induces a changing elec-
trical field in the cerebral cortex below the coil.
The physiologic response appears to be caused
by current flow in the cortical tissue, which
leads to neuronal depolarization (exciting or
inhibiting the cortex).3 The participant feels a
‘‘light tap’’ on the scalp, may feel a twitch of
the face muscles, and hears a brief, loud click
as the current passing through the coil tightens
the copper wire. Participants report that this is
not unpleasant. The stimulation of the brain
itself is painless.

Multiple stimuli (called ‘‘trains’’) of rTMS
of appropriate frequency, intensity, and dura-
tion can lead to transient increases or decreases
in excitability of the affected cortex that last
beyond the duration of the train itself.4 Slow
rTMS (1 Hz), where one magnetic pulse is
applied every second, delivered to the motor
cortex can give rise to a lasting decrease in
corticospinal excitability5,6 primarily by affect-

ing intracortical facilitation.7 Applied to other
cortical regions, slow rTMS appears to similarly
decrease excitability in the targeted cortical
region leading to measurable behavioral ef-
fects.8–12 Conversely, fast rTMS (5, 10, or
20 Hz) can induce a transient increase in
cortical excitability.13,14

The maximum output of a TMS device
can be in the range of 1.5 Tesla (e.g., Magstim
Rapid Magnetic Stimulator Unit, Magstim
Corporation, New York, NY). To achieve focal
brain stimulation, TMS is applied with a figure
8-shaped stimulation coil (7 cm in diameter),
where the area of cortex affected is �1 cm
square, located at the crossover in the figure
8-shaped coil. See Figure 1.

SAFETY OF rTMS
When higher frequencies are used there is a
small risk of undesirable side effects, including
seizures. Nevertheless, rTMS appears to be safe
if appropriate guidelines are followed.15,16

Guidelines for the safe use of rTMS were
published in 199317 and were updated at the
First International Workshop on the Safety of
Transcranial Magnetic Stimulation held in
June of 1996 in Bethesda, MD, USA.16 These
guidelines gave rise to a specific set of precau-
tions and recommendations that have been
endorsed by the International Federation of
Clinical Neurophysiology.15,16

The intensity of the TMS that the parti-
cipant receives is best adjusted for each TMS
session. This can be done by determining the
motor threshold, and setting the TMS intensity
as a given percentage of the individual’s motor
threshold at that given time point. Recommen-
dations for safety parameters of rTMS are based
on stimulation intensities expressed as a percent
of the individual’s motor threshold. Motor
threshold refers to the intensity of magnetic
stimulation needed to elicit a muscle twitch in
the thumb in 5 out of 10 trials when using
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single-pulse TMS applied to the primary
motor cortex of the contralateral hemisphere.
The motor threshold is reported as a percent
of maximum output of the TMS device.
There is wide variability in the intensity
and duration of TMS stimulation across stu-
dies, but these should always follow safety
guidelines.

Cortical lesions can change cortical excit-
ability and hence may increase the risk of
induction of seizures by exposure to cortical
stimulation. TMS (including rTMS) has been
used in a large number of studies on stroke
patients without complications. Over 1000
stroke patients are reported to have been treated
with TMS with no complications.

MODULATION OF CORTICAL
EXCITABILITY WITH rTMS
The possibility of modulating cortical excitabil-
ity with rTMS has generated a large number of
trials attempting to apply rTMS for the treat-
ment of a variety of neuropsychiatric condi-
tions. The hypothesis underlying most of these
rTMS treatments is that modulation of cortical
excitability in cortical areas of dysfunction (as
evidenced by functional neuroimaging) may
result in clinical benefit for the patients.4,18

For example, Siebner and colleagues19

found that low-frequency rTMS appears cap-
able of normalizing abnormally enhanced mo-
tor cortical excitability in some patients with
dystonia and has led to symptomatic improve-
ment for hours to days. In their study, the
rTMS protocol included a 30-minute train
(1800 stimuli) of 1 Hz rTMS at a stimulus
intensity of 10% below the motor threshold,
administered to the left (L) motor cortex
area for the hand in 16 patients with writer’s
cramp. Some patients (6/16) showed marked
improvement in handwriting lasting more than
3 hours. The improvement persisted for several
days in two patients. A neurophysiologic
study of the effects of the rTMS protocol on
cortico-cortical excitability demonstrated that
the 1 Hz rTMS protocol reduced intracortical
facilitation and enhanced intracortical inhibi-
tion. Recently these findings have been con-
firmed7,20 and suggest that slow rTMS is
capable of reinforcing deficient intracortical
inhibition in some patients with dystonia.

EFFECT ON SPEECH IN NORMALS
One of the most dramatic effects of TMS is
magnetically induced speech arrest. Several in-
vestigators have reported that rTMS over the L
frontal cortex can cause subjects to cease speak-
ing, to stutter, or to repeat segments of words.
Pascual-Leone and colleagues21 were the first
to induce speech arrest (25 Hz rTMS with a
round coil) in a population of epileptic subjects
awaiting surgery. The TMS identification of
the hemisphere dominant for speech in all six
subjects matched that obtained in the sodium
amobarbital (Wada) test. The induction of
speech arrest by TMS was replicated, in epi-
leptic patients, by Jennum and associates,22

Figure 1 Illustration of the TMS equipment and pro-
cedure. (A) Infrared camera used to detect the position
of the TMS coil on the participant’s head and brain
cortex. (B) Figure 8-shaped TMS stimulation coil as it is
placed on the scalp to stimulate the brain cortex; it is
painless and noninvasive. (C) Structural MRI scan of
the participant aids in positioning the TMS coil on the
exact region of interest on the brain cortex (Brainsight,
Rogue Industries, Montreal, Quebec, Canada). TMS,
transcranial magnetic stimulation.
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using 30 Hz rTMS. They also found a strong
concordance with the results of the Wada test.
A later study by Epstein and colleagues23 iden-
tified 4 to 8 Hz as the optimum range of rTMS
frequency for induction of speech arrest in
normal subjects when a specially designed
iron-core coil was used. Two recent studies by
other investigators24,25 also obtained speech
arrest lateralized to the L hemisphere with
frontal stimulation. These studies locate the
critical site of stimulation to be over the middle
frontal gyrus, dorsal to the inferior frontal
gyrus, which is usually referred to as Broca’s
area. Pascual-Leone and colleagues21 noted
that counting errors and paraphasias could
be induced by rTMS to the same sites that
led to speech arrest, but at lower stimulation
intensities.

Flitman and associates26 applied rTMS
(15 Hz, 750 millisecond trains, 20% above
motor threshold) over frontal and parietal lobes
while subjects judged whether a word was con-
gruent with a simultaneously presented picture.
Subjects were slower to verify the congruency
when TMS was applied to the frontal site of the
dominant hemisphere. Wassermann and col-
leagues27 also showed that rTMS of the domi-
nant hemisphere could disrupt visual naming.
Fourteen epilepsy patients were asked to name
pictures and words while receiving magnetic
stimulation to the motor speech area. Speech
arrest was obtained in all but one patient when
stimulated over the L hemisphere. In addition,
picture naming errors were significantly in-
creased with L hemisphere rTMS while word
reading was unaffected.

Picture naming was also examined by Töp-
per and colleagues,28 who applied single-pulse
TMS over Wernicke’s area and motor cortex.
TMS over Wernicke’s area 500 to 1000 milli-
second prior to picture presentation resulted in
faster reaction times than control trials. The
effect was specific to task and area. These
results were replicated in a subsequent study
by the same group.29 Trains of rTMS (20 Hz
frequency, 2 second duration) were applied
to Wernicke’s area while subjects had to name
a black-and-white drawing as quickly as possi-
ble. Stimulation of L Wernicke’s area resulted
in significantly shorter reaction times com-
pared with the R hemisphere homologue of

Wernicke’s area, Broca’s area, and primary
visual cortex. The authors suggested that
rTMS induced a facilitation in lexical search,
which resulted in shorter reaction times. These
effects raise several questions about why TMS
would have facilitatory effects within a system.
Factors such as paradoxical lesion effects, that
is, disruption of a given area resulting in disin-
hibition of another remote site, must be con-
sidered as well as generalized arousal within the
language system.

Stewart and coinvestigators30 have begun
to probe parts of the language system by pre-
dicting that Brodmann’s area (BA) 37 has a role
in phonological retrieval and object naming.
They applied rTMS over the posterior region
of L and R BA 37 and over the vertex. When
rTMS was applied to L BA 37, participants
were slower on picture naming but there was
no effect on word reading, nonword reading,
or color naming. Thus, with respect to object
encoding and naming, the posterior region of
BA 37 would seem to be critical for recognition.

A recent study by Shapiro and associates31

used 1 Hz rTMS at 110% of motor threshold to
study grammatical distinctions in the frontal
cortex and demonstrate the role of the L frontal
cortex in representation of verbs as a gramma-
tical class. Selective deficits in producing verbs
relative to nouns in speech are well documented
in neuropsychology and have been associated
with L hemisphere frontal cortical lesions re-
sulting from a variety of causes. This func-
tional-anatomical link, though problematic,
has led some researchers to propose that verb
retrieval is mediated by L frontal or fronto-
striatal circuits that also subserve motor plan-
ning. These investigators used rTMS to target a
portion of prefrontal cortex along the middle
frontal gyrus anterior and superior to Broca’s
area while subjects performed a linguistic
task involving regular nouns or verbs. Average
response time for verbs increased following
rTMS, a change that was both qualitatively
and quantitatively different from that seen after
the noun condition or the sham stimulation.
This suggests that verb production had been
specifically hindered. These results demonstrate
for the first time that neural circuits in the L
frontal cortex adjacent to Broca’s area are cri-
tical at some stage in the spoken production
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of verbs by unimpaired individuals. This
and the other studies mentioned illustrate
the potential of TMS in studies of linguistic
processing.

SIGNIFICANCE OF PREVIOUS
STRUCTURAL AND FUNCTIONAL
IMAGING STUDIES IN APHASIA
Structural imaging studies have begun to clarify
the issue of potential for recovery of speech
in nonfluent aphasia patients. For example,
Naeser and colleagues32,33 employed structural
imaging (CT and MRI) with nonfluent aphasia
patients and delineated a specific L hemisphere
lesion site pattern in subcortical white matter,
which is associated with mild-moderate non-
fluent speech, and a more extensive white
matter lesion pattern associated with severe
nonfluent speech.

Functional imaging studies with chronic
aphasia patients have also begun to examine
levels of cortical activation during language-
related tasks. Some functional imaging studies
have observed activation in remaining L hemi-
sphere cortical regions of interest (ROIs) to
have a primary role in aphasia recovery.34–39

Other studies have observed activation in non-
damaged R hemisphere ROIs to have a primary
role.40–44 Each hemisphere may be important,
depending on the type of language behavior and
when it was examined.40,45–50

Recent functional magnetic resonance
imaging (fMRI) research with chronic nonflu-
ent aphasia patients has indicated that these
patients appear to have excess blood flow in
certain areas of the brain while producing non-
fluent speech. Naeser and colleagues51 used the
Dynamic Susceptibility Contrast fMRI method
to study overt propositional speech in chronic
nonfluent aphasia patients. While producing
normal speech, controls had significantly higher
relative cerebral blood volume (relCBV) in the
L supplementary motor area (SMA) than in the
R SMA. In contrast, while producing nonfluent
speech, the aphasia patients had significantly
higher relCBV in the R SMA than in the L
SMA. Additionally, the patients had signifi-
cantly higher relCBV in the R sensorimotor
mouth during nonfluent speech (versus a non-
verbal control condition). This R sensorimotor

mouth relCBV in the patients was also signifi-
cantly higher versus the controls during speech.

Although functional imaging studies are
beginning to show the cortical regions activated
during language tasks in stroke patients with
aphasia, the effect of activation in these regions
is still largely unknown. Also unknown is
whether the R hemisphere activation observed
in nonfluent aphasia patients is beneficial or
maladaptive. This activation or overactivation
observed in nonfluent patients may represent
a dead-end or maladaptive strategy rather than
a beneficial one40,43 and it may limit, rather
than account for, aphasia recovery in nonfluent
patients.

The results from the above-mentioned
studies suggest that poor modulation, including
possible overactivation of R perisylvian lan-
guage homologues, may in part underlie the
hesitant, poorly articulated, agrammatic speech
associated with chronic nonfluent aphasia pa-
tients. If so, suppression of this overactivation
may result in improved speech and language
behavior.

CONCEPT FOR rTMS TREATMENT
While it may seem paradoxical to suggest that
promoting inhibition in R hemisphere ROIs
would promote improved naming ability or
speech, there are animal studies and some hu-
man case reports which suggest that direct or
indirect neural ‘‘damage’’ to specific areas in the
central nervous system may result in facilitation
of behavior (see Kapur52 for review). Kapur has
labeled this phenomenon as ‘‘paradoxical func-
tional facilitation’’ (PFF). PFF is known as the
‘‘Sprague effect’’ in animal studies where, for
example, a new lesion in the superior colliculus
was observed to improve visual functioning and
visual attention following an initial occipito-
parietal lesion in cats. In humans, there are case
studies whereby ambidextrous adults who had
stuttered since childhood stopped stuttering
following focal brain damage in adulthood
(e.g., stroke or head injury), even as soon as
10 days postonset.53 Vuilleumier and collea-
gues54 reported the disappearance of L-sided
unilateral neglect, brought on by a R parietal
infarct, after the occurrence of a second lesion
in the area of the L frontal eye field.
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Disruption of a given element in a neural
network using rTMS may promote improved
task performance by modulating activity in
remote, trans-synaptically affected neural struc-
tures. This parallels the notion of PFF.52

RESEARCH WITH rTMS TO
IMPROVE NAMING IN APHASIA
The ability to name pictures was chosen as a
measure of language behavior because it has
been observed that there is continued improve-
ment for 5 to 10 years poststroke in some
aphasia patients.55 Based on our current under-
standing of overactivation in R hemisphere
language homologues in nonfluent aphasia pa-
tients during speech, we are developing a new
language rehabilitation treatment approach for
these patients using rTMS. There are two
phases to our rTMS research.

Phase 1 rTMS Treatments

In Phase 1, we apply slow 1 Hz rTMS for
10 minutes (90% of motor threshold) to at least
four different R perisylvian language homolo-
gues, during different rTMS sessions.56 Phase 1
sessions determine which single ROI might
produce the Best Response (most improvement
in naming pictures) for an individual nonfluent
patient. The patient’s ability to name pictures is
immediately tested after the 10-minute rTMS
treatment, with a list of 20 Snodgrass and
Vanderwart57 pictures. There are five 20-item
lists. Each list has the same level of difficulty/
complexity. The internal order is randomized
and the list presentations are randomized. After
rTMS treatment to a specific ROI, if the
patient’s ability to name pictures is at least 2
SD above baseline testing, then that ROI is
considered to be the Best Response ROI for
that individual patient.

To date we have studied six chronic stroke
patients (four male and two female; age range
51–67 years; 1–30 years post L hemisphere
stroke). Five had nonfluent speech that ranged
in severity from mild to severe. One had re-
covered from a nonfluent Broca’s aphasia to
anomic aphasia. We applied slow 1 Hz rTMS
to transiently suppress activity in R hemisphere
language homologues as identified by MRI-

guided frameless stereotaxy (see Fig. 1). We
evaluated the effects on picture naming from
focal disruption of R pars triangularis (BA 45);
R pars opercularis (BA 44); R posterior superior
temporal gyrus (BA 22); and R motor cortex
(M1) mouth area (orbicularis oris).

All six patients correctly named the highest
number of pictures following application of
rTMS to the posterior gyral portion of the
pars triangularis part of R Broca’s homologue
(R BA 45). In five of the six subjects this
improvement was statistically significant as
compared with the individual baseline perfor-
mance and it was the Best Response ROI.
Overall, there was a significant effect of site
of rTMS stimulation on both number of pic-
tures named correctly (repeated measures
ANOVA F-value 8.3; p¼ 0.001) and response
time (repeated measures ANOVA F-value 3.6;
p< 0.05). Patients named significantly more
items after rTMS to R BA 45 than to R BA
44 (p< 0.0005), R M1 (p< 0.005), and R BA
22 (p< 0.001). On average this resulted in
three more items named correctly after rTMS
to R BA 45 than at baseline or after any of the
other ROIs stimulated with rTMS. Following
rTMS to R BA 44, all subjects tended to name
fewer items and were significantly slowed in
their reaction times (versus R BA 22, p< 0.05;
versus R BA 45, p< 0.01; and versus R M1,
p< 0.01). It is assumed that the 10 minutes
of 1 Hz rTMS suppressed excitation in R BA
45 which in turn resulted in improved modula-
tion, at least in part, of R perisylvian homo-
logues and the bi-hemispheric network
associated with naming, leading to improved
naming ability. Thus, while the abnormally
high, increased R perisylvian activation during
nonfluent speech has been suggested to be
maladaptive, perhaps some modulated activa-
tion may be beneficial.

Phase 2 rTMS Treatments

In Phase 2, we apply slow 1 Hz rTMS for
20 minutes, 5 days a week for 2 weeks (90% of
motor threshold) to the Best Response ROI for
an individual patient based on results from the
Phase 1 rTMS sessions. In Phase 2 we treated
four R-handed, chronic aphasia patients (age
range, 52–58 years; 5–11 years poststroke),
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who were recovered Broca’s/anomic, mild
nonfluent, moderate nonfluent, or severe non-
fluent patients.58 The Best Response ROI from
Phase 1 for each patient was the posterior gyral
portion of R BA 45. On language testing
performed at 2 months post-rTMS, each pa-
tient improved in naming on standardized tests.
For example, there was significant improve-
ment on the first 20 items of the Boston
Naming Test,59 (t¼ –8.66, p¼ 0.003) with an
average increase of 42%. There was also sig-
nificant improvement on specific naming subt-
ests of the Boston Diagnostic Aphasia Exam,60

including the 12 tools/implements (t¼ –3.67,
p¼ 0.035) with an average increase of 96%; and

the 12 animals (t¼ –5.0, p¼ 0.015) with an
average increase of 49%.

Future fMRI research may show which
specific ROIs in an aphasia patient have over-
activation to help guide rTMS treatment for
that patient. Figure 2 shows an fMRI scan
during overt naming, for a 58-year-old man
with mild nonfluent aphasia before Phase 2
rTMS treatments.61 This fMRI scan shows
overactivation for this task, primarily in R-
hemisphere language homologues. He bene-
fited from application of the slow 1 Hz rTMS
to R BA 45 in Phase 2. See graphs in Figure 3.

One of our patients with severe nonfluent
speech has had follow-up testing for 8 months

Figure 2 Structural and functional MRI for a mild nonfluent aphasia patient (58-year-old male, 9.5 years
poststroke) before rTMS treatment. (A) Structural (axial) MRI scan. (B) Functional MRI scan during overt picture
naming before Phase 2 treatment with rTMS. Note the increased activation in right hemisphere perisylvian
language regions, especially motor cortex (mouth) and Broca’s area (pars triangularis, right BA 45). (C) Left and
right lateral views of this patient’s brain reconstructed from structural MRI. The triangle marks the posterior gyral
portion of right BA 45 (pars triangularis, part of right Broca’s area) which was stimulated with the magnetic coil
during each 20-minute rTMS treatment session of Phase 2. rTMS, repetitive transcranial magnetic stimulation;
BA, Brodmann’s area.

Figure 3 Naming data acquired before and after 2 weeks of rTMS treatments for patient shown in Figure 2.
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after the last rTMS treatment in Phase 2.62 She
is a 56-year-old woman who was 6 years post L
intracerebral hemorrhage (subcortical lesion
only). On pre-rTMS testing, she earned a score
of 4 on the first 20 items of the Boston Naming
Test; at 2 months post-Phase 2 rTMS her score
was 7; and at 8 months her score was 12. On the
Boston Diagnostic Aphasia Exam naming
subtests, there was also improvement in her
ability to name tools/implements. Pre-rTMS,
her score was 2; at 2 months post-Phase 2
rTMS, her score was 3; and at 8 months it
was 5. Her pre-rTMS score on the Boston
Diagnostic Aphasia Exam subtest for naming
animals was 0; at 2 months post-Phase 2 rTMS
her score was 1; and at 8 months it was 6.

This patient received no speech therapy
between rTMS and subsequent retesting. If
the brain is undergoing reorganization during
2 to 8 months post-rTMS, this may be an ideal
time to provide speech therapy. A combination
approach to treatment (rTMS followed by a
period of speech therapy) may promote better
recovery.

It is posited that 1 Hz rTMS decreased
excitation in R BA 45, which in turn modulated
activity in the distributed, bi-hemispheric lan-
guage network and this led to improved nam-
ing. This network may include occipital regions
BA 17, 18, 1963,64 and temporal regions BA 37,
22, 21, or 20.65–69 Further investigation with
functional imaging is needed to verify the re-
gions that comprise this network.

rTMS TREATMENT
AND MOOD STATE
We observed no negative side effects or com-
plications during or after the rTMS treatment
sessions. Patients report subjectively that it is
easier for them to recall words and name pic-
tures. Klein and colleagues70 reported a signifi-
cant antidepressant effect of 1 Hz rTMS
applied to R prefrontal cortex in patients with
treatment-resistant major depression. There-
fore, we have begun to investigate possible
mood effects of R frontal rTMS treatment in
our aphasia patients. To date, we have studied
three R-handed males with chronic aphasia
(age range, 52–58 years; 5–11 years poststroke)
who had recovered Broca’s/anomic aphasia

or mild-moderate nonfluent aphasia. Data
were collected pre-Phase 2 rTMS treatment,
at 2 weeks and at 2 months post-rTMS treat-
ments using a Visual Analog Scale for rat-
ing mood.71 A one-way repeated measures
ANOVA showed a significant increase
(F-value 11.76; p¼ 0.02) in the ‘‘happiness’’
score post-rTMS and the ‘‘sadness’’ score de-
creased in two out of three (the third patient
indicated little ‘‘sadness’’ pre-rTMS and there-
fore had little room for change, i.e., decrease in
sadness score). These mood effects may be
secondary to the improvement in naming abil-
ity, but there may be rTMS-induced mood
effects from R frontal stimulation independent
of language effects.72

These data are considered preliminary.
The patients’ reports of improvement in
mood, their increased ease in the ability to re-
call words, and even task performance may be
driven by patient expectations. A randomized,
controlled trial using sham treatments to de-
termine how much of a role subject expectation
may have, will be an important consideration
for the future application of rTMS as a com-
plementary treatment for aphasia.

CONCLUSION
rTMS allows noninvasive stimulation of the
human cortex. It is an innovative new tool in
the study of the neurobiology of language in
humans. Slow 1 Hz rTMS can give rise to a
lasting decrease in cortical excitability. Using
the notion of PFF, one may be able to utilize
1 Hz rTMS to suppress activation in a specific
ROI that has been observed to have high blood
flow (presumed overactivation) on fMRI. Sup-
pression of that specific ROI may have an
overall modulating effect on the remaining
neural networks for language.

Although it is unknown whether long-
term recovery in naming ability is related to
brain reorganization in both hemispheres, a
possible role for the R hemisphere has been
suggested for some patients.73 Our preliminary
research shows that rTMS applied to the pos-
terior, gyral portion of R BA 45 (part of R
Broca’s area) improves naming in chronic, non-
fluent aphasia patients. When applied to the
appropriate cortical region, rTMS may provide

188 SEMINARS IN SPEECH AND LANGUAGE/VOLUME 25, NUMBER 2 2004

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 C
O

N
S

O
R

T
IU

M
:N

E
R

L 
(U

ni
ve

rs
ity

 o
f M

as
sa

ch
us

et
ts

 -
 A

m
he

rs
t)

, U
ni

ve
rs

ity
 o

f M
as

sa
ch

us
et

ts
 -

 A
m

he
rs

t. 
C

op
yr

ig
ht

ed
 m

at
er

ia
l.



a complementary treatment approach for apha-
sia.56 When combined with current speech and
language therapies for aphasia, rTMS may help
to promote better recovery of language.
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