A Hybrid Model for Damage Localization and Prognosis Including Temperature Compensation

Rajesh Kumar Neerukatti, Arizona State University at the Tempe Campus
A Hybrid Model for Damage Localization and Prognosis Including Temperature Compensation

Conference Paper · May 2015

4 authors, including:

Rajesh Kumar Neerukatti
Arizona State University
7 PUBLICATIONS 8 CITATIONS

Aditi Chattopadhyay
Arizona State University
403 PUBLICATIONS 2,816 CITATIONS

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: Rajesh Kumar Neerukatti
Retrieved on: 21 July 2016
A HYBRID MODEL FOR DAMAGE LOCALIZATION AND PROGNOSIS INCLUDING TEMPERATURE COMPENSATION

Rajesh Kumar Neerukatti, Kevin Hensberry, Narayan Kovvali, Aditi Chattopadhyay
Arizona State University, Tempe, AZ - 85287

ABSTRACT

The development of a reliable structural damage prognostics framework, which can accurately predict the fatigue life of critical metallic components subjected to a variety of in-service loading conditions, is important for many engineering applications. In this paper a hybrid damage localization method is developed for prediction of cracks in aluminum components. The proposed fully probabilistic methodology combines a physics based prognosis model with a data driven localization approach to estimate the crack growth. Particle filtering is used to iteratively combine the predicted crack location from prognostic model with the estimated crack location from localization algorithm to probabilistically estimate the crack location at each time instant, while accounting for the uncertainties. At each time step, the crack location predicted by the prognosis model is used as a priori knowledge (dynamic prior) and combined with the likelihood function of the localization algorithm for accurate crack location estimation. For improving the robustness of the localization framework, temperature compensation is carried out. The model is validated using experimental data obtained from fatigue tests performed on an Al2024-T351 lug joint at different temperatures. The results indicate that the proposed method is capable of estimating the crack length with an error of less than 1mm for the majority of the presented cases.

1. INTRODUCTION

One of the primary research areas in structural health monitoring (SHM) [1, 2] is that of damage localization and [3, 4]. The goal is to reliably localize and predict damage in complex structures, while accounting for the uncertainties in sensor measurements and maintaining robustness to variation in environmental parameters such as temperature. Guided wave based localization methods [4-6] utilize time-of-flight information for estimating the damage location, and have gained significant popularity in the recent years. Time-frequency [7] signal processing techniques allow joint time and frequency domain analysis of signals, and have been utilized for extracting time-frequency features capturing the time-of-flight information in structures. Two of the most popular time-frequency feature extraction techniques are the continuous wavelet transform (CWT) [6] and the matching pursuit decomposition (MPD) [8]. The CWT algorithm decomposes a signal by matching it with shifted and scaled wavelets and has been successfully used for time-of-flight extraction [5, 9-11], and damage detection [12]. In contrast, the MPD algorithm iteratively decomposes a signal into a linear expansion of weighted basis functions from an overcomplete dictionary using the inner product. Like the CWT, the MPD has been used to decompose Lamb wave modes [13-15], for detecting fatigue damage [3, 4] and detect composite delamination [16]. A modified version of the MPD algorithm that uses computationally simple Gaussian atoms grouped together to create dispersive Lamb wave signals has been shown to successfully extract time-of-flight information [17]. Liu et al. [18] proposed a damage assessment methodology using this time-frequency approach for detecting damage in
composite structures with multiple stiffeners. Delaminations were detected through identifying the mode conversions due to the structural imperfections. Based on this information, the delamination was quantified using an energy based damage index.

Reliable extraction of time-of-flight information in geometrically complex parts and small structures, however, is challenging. This is because in complex geometries, with holes and boundaries, the sensors used to measure the guided waves sense boundary reflected waves in addition to the waves that interrogate the damage. In smaller structures, these reflections can often arrive at the same or similar time as wave carrying information related to the damage, making the extraction of information about damage difficult or sometimes impossible. Another difficulty in time-of-flight extraction arises due to temperature variation. Temperature variations affect the wave speed, which, if not accounted for, can have an adverse impact on the time of flight estimates and the localization results.

After the time-of-flight information has been extracted from the Lamb wave signals, it is input to one of many types of localization algorithms. Traditional localization techniques triangulate a damage location using intersecting ellipses and least squares estimates [3]. The major limitation of these traditional techniques is that they only provide a point, or deterministic, solution for the damage location and provide no information on the error or uncertainty in the estimates. In order to model measurement, wave velocity, and sensor placement uncertainties, probabilistic methods have been investigated. In [19-21], advanced baseline-free localization techniques were developed and the estimation error is quantified by introducing probability theory in the localization equations. The use of probabilistic localization algorithms has been expanded to include the use of the extended Kalman filter (EKF) [9, 22-24], Markov chain Monte Carlo (MCMC) method and particle filters [10, 25]. Each of these advanced techniques estimate the actual wave velocity to account for temperature variation in the localization system.

In this paper, a novel method is developed for effective damage localization and prognosis in complex metallic structures. The proposed method uses sequential Bayesian techniques to combine a physics based damage prognosis model with a data driven probabilistic damage localization approach. Specifically, particle-filtering (PF) [26] is used to iteratively update crack length predictions obtained using a prognosis model [27, 28] with the estimated crack location from a Lamb wave based probabilistic crack localization algorithm [29]. The prognosis model uses information from physics based modeling to accurately predict the crack propagation and combines it with a data driven approach to account for the variability in loading conditions and material scatter. The localization algorithm uses a probabilistic framework to account for uncertainty in the time-of-flight measurements. Robustness to multipath effects and unknown temperature variations is achieved using multi-sensor time-of-flight information in conjunction with data association [30, 31] and the technique has been shown to be capable of localizing fatigue damage in complex structures at unknown temperatures [29]. However, a key limitation in the algorithm is the use of a fixed and generic prior over the entire probable damage region [32]. In the case of fatigue loading where the crack length increases with the number of cycles, this fixed and generic prior lead to inaccuracies and high variance in the damage location estimates. Therefore, in this work a dynamic and more informative prior obtained from the physics based prognosis model is incorporated into the localization framework for dynamic damage estimation and prediction. Use of this dynamic prior is expected to significantly increase the overall effectiveness of the algorithm since the domain of probable damage locations is smaller than when a fixed prior is used. Even though there is a small computational overhead in
constantly adapting the prior, i.e., using the prognosis model at every time step, it was observed that the overall efficiency remains high since the proposed prognosis model is very efficient. Thus, the sequential Bayesian framework utilized in the present paper optimally combines the predicted and estimated crack tip locations dynamically with uncertainty quantification.

The proposed method is validated experimentally on an aluminum 2024-T351 lug joint subjected to uniaxial fatigue loading. The growing crack length was measured at different instances of time using high-resolution images, and the corresponding Lamb wave measurements were recorded. The crack location estimates obtained with and without the dynamic prior are then compared in order to demonstrate the benefits of integrating the damage prognosis model and localization algorithm using particle filtering.

2. PROBABILISTIC FRAMEWORK FOR DAMAGE LOCALIZATION

2.1 Time of flight extraction and damage localization

A complete description of the grouped matching pursuit decomposition (MPD) algorithm used in this investigation for time-of-flight extraction can be found in literature [29, 32]. One of the main difficulties in applying signal processing techniques to SHM wave signals is that the portion of the signal that contains information about the damage often has a small amount of energy compared to the dominant modes in the signal. For the MPD algorithm, this means that a large number of iterations must be completed before finding the damage perturbation in the signal. One technique to remove the dominant $A_0$ and $S_0$ modes from a signal, and increase the relative energy of the damaged portion, is to separately actuate and sense from both transducers in a sensor pair and then subtract their signals [33]. By subtracting the signals, any structurally linear wave (e.g. any direct $S_0$ or $A_0$ modes) can be removed. This leaves only waves that have interacted with a structural nonlinearity, such as damage or a boundary. With only the information on damages and boundary reflections remaining in a signal, the damaged features are easier to extract by the MPD algorithm for use in detection or localization.

The MPD algorithm iteratively decomposes a signal into a weighted linear expansion of elementary basis functions, or atoms [8]. Specifically, a signal $x(t)$ can be expressed using the MPD algorithm as

$$x(t) = \sum_{i=0}^{N_i-1} \alpha_i g_i(t) + r_{N_i}(t)$$

where $\alpha_i$ is the $i$th expansion coefficient, $g_i(t)$ is the $i$th basis function, and $r_{N_i}(t)$ is the residual signal after $N_i$ iterations. The basis functions $g_i(t)$ are iteratively selected from a predefined set or dictionary to maximize the magnitude of the match (coefficients $\alpha$) with desired signal components, such that after a sufficient number of iterations the MPD representation extracts the main signal components of interest and filters out the noise [3]. Previous work that utilized the MPD algorithm to decompose Lamb wave signals used a dictionary comprised of simple basis functions of Gaussian time-frequency shifted and scaled harmonics of the form

$$g^{(d)}(t) = \left(8\kappa_i / \pi \right)^{1/4} e^{-\kappa_i(t-\lambda_i)^2} \cos(2\pi v_m t),$$

where $d = \lambda_n, v_m, \kappa_l$ is the set of all atoms time-shifted by $\lambda_n (n = 1,...,N_d)$, frequency-shifted by $v_m (m = 1,...,M_d)$, and time-scaled by $\kappa_l (l = 1,...,L_d)$ [3, 34].

In order to create dispersive (or more generally shaped) atoms, while retaining the benefits of the Gaussian basis, a new grouped MPD algorithm is proposed here in which many simpler
Gaussian time-frequency shifted and scaled atoms are grouped together [32]. Hilbert transform is used to create an envelope of the signal and each peak in this envelope corresponds to the approximate center of a mode present in the signal. To complete the time-of-flight calculation, the time-shifts of the Gaussian atoms contributing to the grouped atoms are combined to obtain the time-of-flights for the new grouped atoms. The combination is accomplished using the mean time-shift, defined as

$$\bar{\tau} = \frac{\int |x(t)|^2 \, dt}{\int |x(t)|^2 \, dt}. \quad (3)$$

The structural damage localization algorithm proposed here is based on probabilistic analysis of dispersive wave propagation in materials and has been presented in the literature [17, 29]. In this approach, time-of-flight information is first extracted from Lamb wave sensor measurements using the grouped matching pursuit decomposition (MPD) algorithm with a Gaussian time-frequency [7] dictionary. The extracted time-of-flight of the A₀ mode reflecting off of the damage is then utilized in a Bayesian probabilistic framework to localize damage with uncertainty quantification. The probabilistic damage localization algorithm uses a Bayesian framework to optimally combine information from prior knowledge about the damage location with that from (noisy) time-of-flight measurements obtained from wave based sensor data.

Let \( \tau \) denote the time-of-flight of a damage-reflected wave, obtained using grouped MPD from a sensor signal corresponding to damage located at coordinates \( \overline{X}_c = (x_c, y_c) \). The likelihood function for the damage location can be defined as,

$$p(\tau \mid \overline{X}_c) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[ -\frac{1}{2\sigma^2} \left( \tau - \frac{\overline{X}_r - \overline{X}_t}{v_{A_0}} \right)^2 \right], \quad (4)$$

where \( \overline{X}_t = (x_t, y_t) \) and \( \overline{X}_r = (x_r, y_r) \) are the respective positions of the transmitter and receiver, \( v_{A_0} \) is the \( A_0 \) mode wave velocity and the notation \( p(\cdot \mid \cdot) \) denotes conditional probability. A grid-based approach is employed for efficiently evaluating the relevant distributions and estimates. Specifically, the domain \( D \) of interest is discretized using a set of \( M \) grid points \( \{(x_{c,1}, y_{c,1}), (x_{c,2}, y_{c,2}), \ldots, (x_{c,M}, y_{c,M})\} \in D \). In this work, a mesh comprised of 1x1 mm squares was used to approximate the test specimen. Using Bayes’ theorem [35-37], the likelihood function in equation (4) is combined with a prior probability distribution \( \Pr(\overline{X}_c = \overline{X}_{c,m}) \) defined over the interrogation region \( D \) to obtain the posterior probability distribution of the damage location given the time-of-flight as

$$\Pr(\overline{X}_c = \overline{X}_{c,m} \mid \tau) = \frac{\sum_{m'=1}^{M} p(\tau \mid \overline{X}_{c,m'}) \Pr(\overline{X}_c = \overline{X}_{c,m'})}{\sum_{m'=1}^{M} p(\tau \mid \overline{X}_{c,m'}) \Pr(\overline{X}_c = \overline{X}_{c,m'})}, \quad m = 1, 2, \ldots, M. \quad (5)$$

The prior probability distribution can be chosen based on \textit{a priori} knowledge of the general stress distribution in the structure [32]. In this paper, the prior distribution is obtained through a physics based damage prognosis model and constantly adapted with fatigue cycles as the damage progresses.
The grouped MPD of a received sensor signal contains several wave components with respective time-of-flights. However, it is not known which of these correspond to the $A_0$ wave reflected from the damage and which to boundary reflections and other paths unrelated to the damage. Since the localization algorithm specifically requires time-of-flight information for the damage-reflected waves, this uncertainty needs to be quantified and addressed. In this paper, the technique of probabilistic data association (PDA) [30, 31] is utilized in order to account for this measurement origin uncertainty within the estimation framework.

### 2.2 Temperature estimation and velocity compensation

In conventional time-of-flight based damage localization schemes, a known fixed wave speed is used assuming it to be representative of the true wave speed in the structure. In reality, however, structural components are often interrogated at unknown and varying temperatures and the wave speed is thus both unknown and can change with the temperature. Further, even a small change in the wave speed can result in significantly different time-of-flights and damage localization results. When attempting to localize damage at unknown temperatures, the largest factor contributing to error is uncertainty in the speed of the wave that is interrogating the damage [38].

In order to achieve damage localization capability that is robust to unknown temperature variation effects, the temperature estimation and velocity compensation algorithm presented in [29, 32] is utilized. As described below, this approach estimates the temperature to determine the actual velocity of the waves in the structure and utilizes this temperature-compensated velocity in the damage localization algorithm. In order to localize damage at unknown temperatures, a model is first created that describes how the group velocity changes with temperature. In this study the material used is aluminum 2024-T351 and the temperature range of the localization system is chosen to be between $-60 \degree C$ and $160 \degree C$, which represents a maximum temperature range over which a guided wave system using PZTs is expected to operate. Using material properties from MIL-HDBK-5 (United States Department of Defense, 2003), theoretical dispersion curves for the aluminum are calculated over this temperature range. The curves are pre-computed offline and stored in a lookup table, in order to save on computational complexity during damage localization. The dispersion curves show that the velocity of the waves decreases with an increase in temperature, which is expected because the stiffness of the material decreases with increasing temperature. In addition, the dispersion curves also show which frequencies and modes are best suited for the task of temperature estimation. For the material and geometry of the specimen used in the present work, the velocity of the $S_0$ mode actuated at 250 kHz was found to be very sensitive to temperature and was thus chosen for temperature estimation. The 250 kHz $S_0$ mode was also the fastest (first arriving) mode, which simplified the calculation of its time-of-flight for temperature estimation. Note that the frequency and mode used for damage localization can be different from the one used for temperature estimation, and in this work the 500 kHz $A_0$ mode is used for the purpose of localization due to better resolution afforded by the higher frequency. Complete description about the temperature and velocity estimation algorithm can be found in [32]. Velocity estimates are obtained from grouped MPD time-of-flights using Maximum Likelihood estimation with the Gaussian model. Specifically, the ML estimate of the velocity $v^*$ is given by
\[ v_{ML}^* = \arg \max_{(v)} \ln \left( \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\tau_i - d_i/v)^2}{2\sigma^2}} \right), \]  \hspace{1cm} (6)

where \( N \) is the number of sensor-actuator pair paths, \( d_i \) is the distance between sensor and actuator for sensor path \( i \), \( \tau_i \) is the time-of-flight for sensor path \( i \), \( \sigma \) is the standard deviation in the time-of-flight measurements, and \( v \) is velocity. The flowchart of the localization algorithm is shown in Figure 1.

Figure 1. Flow chart of the probabilistic damage localization algorithm with temperature estimation.

3. HYBRID MODEL

3.1 Prognosis model

The structural damage localization and prognosis framework presented in this paper uses simple physics based models integrated with the data-driven probabilistic localization approach to estimate and predict fatigue crack length. The strength of this method comes from effectively using information from physics based modeling that accounts for the proper fracture mechanism and the sensor data-driven probabilistic approach that measures the damage using Lamb waves and accounts for material and model uncertainties. The crack growth rate can be expressed as a function of the stress intensity factor (SIF) range as

\[ \frac{da}{dN} = f(\Delta K), \]  \hspace{1cm} (7)

\[ \Delta K = K_{\text{max}} - K_{\text{min}}, \]
where $K_{\text{max}}$ and $K_{\text{min}}$ are the maximum and minimum SIFs, respectively. As the nature of crack growth is exponential or nonlinear depending on the type of loading, the relationship between the crack growth rate and SIF is described using log-log transforms. The typical stages in the crack growth regime for constant amplitude loading are shown in Figure 2.

![Figure 2](image)

**Figure 2.** Relationship between SIF and crack growth for constant amplitude loading.

Prognosis algorithms are typically applied in the stage-II crack growth regime where the relationship between crack growth rate and SIF is linear on a log-log scale for constant amplitude loading. However, in the case of random loading and overloading, this behavior is no longer linear. In this paper the adaptive prognosis model developed in [27] is utilized, which is able to predict the crack growth under random and overloading conditions with high accuracy. Note that the crack needs to be at least around 1 mm in size in order to be resolved by the Lamb wave sensor measurements. Here this condition is ensured using information from models [39, 40] that predict crack initiation in metallic structures and the number of fatigue cycles at which the crack reaches 1 mm in size based on multi-scale modeling taking into account the grain geometry and orientation in the material.

The adaptive prognosis model uses non-constant coefficients $C_1$, $C_2$ and updates them adaptively at each time step based on the previous crack length vs. fatigue cycle data. Specifically, the crack growth rate at a given instant of time is written as

$$\log \frac{da}{dN} = C_1(a_{N-1}, M_p, P_{N,N+1}, N) + C_2(a_{N-1}, M_p, P_{N,N+1}, N) \log(\Delta K),$$  \hspace{1cm} (8)

where $M_p$ denotes material parameters, $P$ represents loading, and subscripts $N-1$, $N$ and $N+1$ denote previous, current and next fatigue loading cycles. The SIF can be expressed as a function of the current crack length ($a_N$), current loading ($P_N$) as

$$\Delta K = f_1(a_N, P_N, S),$$  \hspace{1cm} (9)

where $S$ is a geometric parameter. The crack length at a given cycle $N$ is given by

$$a_N = \int_0^N e^{C_1+C_2 \log(\Delta K)} dN.$$  \hspace{1cm} (10)
The load states are discrete and thus equation (10) can be written as a summation. Therefore, the predicted crack length after $\Delta N$ cycles is given by

$$a_{N+\Delta N} = a_N + \sum_{N=N+1}^{N+\Delta N} e^{C_1 + C_2 \log(\Delta K)} \Delta N.$$  \hspace{1cm} (11)

The SIF in equation (11) above is calculated based on finite element analysis and the associated uncertainty is captured as a predicted crack length distribution $p(a_{N+\Delta N} | a_N)$ obtained using probabilistic regression [27].

At every measurement instant (specific number of fatigue cycles), the crack length is predicted using equation (11). The prediction starts from the 3rd measurement (obtained from the pictures using the camera) point. The first two points are used to initialize the algorithm and identify the parameters $C_1$ and $C_2$ in equation (8), and the crack length is first predicted at the 3rd point. Once the crack length is predicted at the 3rd point, it is incorporated into the training set and the parameters $C_1$ and $C_2$ are re-evaluated before the 4th prediction is made. This process repeats at every instant the experimental crack length is measured.

3.2 Integrating prognosis with localization

As mentioned earlier, the integrated structural damage localization and prognostic method proposed in this paper optimally combines the Lamb wave measurement based localization method with the physics based adaptive prognosis model in a sequential Bayesian framework. Specifically, particle filtering [26] is used to adaptively track the position of the growing crack by combining the likelihood function obtained from the probabilistic localization method with the predicted prior distribution from the prognosis model.

The predicted crack distribution obtained from the prognosis model is a specification for the crack length $a$ (equation (11)) and needs to be converted to crack position $\mathbf{X} = (x, y)$. In the present study, the increment in crack length has been used to predict the crack tip location as follows.

The increment in crack length at time $N$ is

$$\Delta a_N = a_{N+\Delta N} - a_N = \sum_{N=N+1}^{N+\Delta N} e^{C_1 + C_2 \log(\Delta K)} \Delta N.$$  \hspace{1cm} (12)

The predicted crack tip location at $(N+\Delta N)$ cycles is then given by

$$\mathbf{X}_{N+\Delta N} = \mathbf{X}_N + \Delta a_N \ast (\sin \theta, \cos \theta),$$  \hspace{1cm} (13)

where $\theta$ denotes the angle of propagation of the crack, determined at each time step by averaging the previous crack directions. Further, the standard deviation of the predicted crack length $(\bar{\sigma} = (\sigma_x, \sigma_y))$ is

$$\bar{\sigma}_{N+\Delta N} = \sigma_{N+\Delta N} \ast (\sin \theta, \cos \theta),$$  \hspace{1cm} (14)

where, $\sigma_{N+\Delta N}$ is the standard deviation in the predicted crack length at $(N+\Delta N)$ cycles.

Together, equations (11)-(14) define the Markovian state dynamics model used for tracking the crack tip location with the particle filter:

$$\mathbf{X}_{N+\Delta N} \mid \mathbf{X}_N \sim p(\mathbf{X}_{N+\Delta N} \mid \mathbf{X}_N).$$  \hspace{1cm} (15)

The measurement model relating the time-of-flight extracted from sensor data to the crack location is given by
\[ \tau_{N+\Delta N} \big| X_{N+\Delta N} \sim p(\tau_{N+\Delta N} \big| X_{N+\Delta N}) \]  \hspace{1cm} (16)

Given the probabilistic damage evolution and measurement models, and the time-of-flight extracted from measured sensor data, the crack location can be optimally estimated in a sequential Bayesian framework using stochastic filtering. For the non-linear and non-Gaussian state-space model here, the sequential Monte Carlo technique of particle filtering (PF) \cite{26} is suitable. The PF estimates the posterior distribution of the state variables in a sequential Bayesian framework by representing the distributions using particles and weights. In this paper we utilize the PF to integrate information from the damage prognosis (state dynamics) model and the damage localization (measurement) model with time-of-flight sensor data to adaptively estimate the crack tip location. The sequential Bayesian framework for iteratively computing the posterior distribution on the crack location \( p(X_N | \tau_N) \) can be written as:

\[
p(\bar{X}_N \mid \tau_N) \propto p(\bar{X}_N \mid \tau_N) \int p(\bar{X}_N \mid \bar{X}_{N-1})p(\bar{X}_{N-1} \mid \tau_{N-1})d\bar{X}_{N-1}, \tag{17}
\]

where \( n \) denotes fatigue cycles. The PF representation of the posterior probability distribution is an approximation using particles \( r_n^{(k)} \) and associated weights \( w_n^{(k)} \), given by

\[
p(\bar{X}_N \mid \tau_N) \approx \sum_{k=1}^{\Omega} w_n^{(k)} \delta(\bar{X}_N - \bar{X}_N^{(k)}), \tag{18}
\]

where \( \Omega \) is the number of particles and \( \delta(\cdot) \) is the Dirac delta function. The PF iteratively updates the particles and weights via sequential importance sampling (SIS). Following the Sequential Importance Resampling procedure, at each time step (fatigue cycles) \( \tau \) particles are sampled from the state distribution \( p(\bar{X}_{N+\Delta N} \mid \bar{X}_N) \) and the weights are updated using the measurement likelihood \( p(\tau \mid \bar{X}_{N+\Delta N}) \), and resampling is performed as needed to avoid degeneracy. The crack location estimate \((x, y)_N^\wedge\) of \( r_t \), given \( \tau_N \), is then computed as the expected value of the estimated posterior as:

\[
\bar{X}_N = E[\bar{X}_N \mid \tau_N] \approx \sum_{k=1}^{\Omega} w_n^{(k)} \bar{X}_N^{(k)}. \tag{19}
\]

Using multiscale modeling \cite{39}, the crack initiation location and cycles required for the crack to reach a length of 1mm can be predicted with high accuracy. Based on this information, the algorithm is initialized using a Gaussian distribution for the crack location with a mean of \((208.5, 84.5)\) and standard deviation of 1mm.

4. RESULTS

In order to study the performance of the proposed integrated structural damage localization and prognostic method, a bulk aluminum 2024-T351 lug joint was instrumented and subjected to fatigue loading and interrogated. Circular lead zirconium titanate transducers (PZTs) of 6.33 mm diameter and 0.25 mm thickness from American Piezo Ltd. were installed on the specimen for collecting Lamb wave data. The PZT sensors were bonded to the specimen using an off-the-shelf cyanoacrylate adhesive. Seven PZTs were instrumented on the lug joint with a symmetric configuration about the lug joint’s plane of symmetry. The locations of the PZTs can be seen in Figure 3.
The aluminum lug joint, which was machined from a bulk Al 2024-T351 plate, was cyclically loaded between 1.3 kN and 13 kN (load ratio of 0.1) at a rate of 5Hz. After crack initiation, the loading frequency was reduced in order to more easily interrogate the structure at multiple crack lengths. To track the crack growth, a camera with a macro lens was mounted in front of the specimen and was focused in one of two hot spots (top and bottom shoulders); another camera was placed behind the fatigue frame and focused on both hot spots. Images were captured along with the sensor data. The images were used to compute the crack length through digital measurements using calibrated images. The fatigue crack length was measured at different time instances (fatigue cycles) and corresponding Lamb wave data was collected using the PZT sensors. A National Instruments data acquisition system (model NI PXI 1042) with a 14-bit Arbitrary Waveform Generator (AWG, model NI PXI-5412) and a 12-bit high speed digitizer (DIG, model NI PXI-5105) was utilized to interrogate the specimen. The actuation signal is a windowed cosine with 250 kHz central frequency for temperature estimation and 500 kHz central frequency for damage localization. A round-robin approach was used to collect data from all sensor paths. The response along each sensor path was measured ten times and averaged in order to increase the signal to noise ratio.

In order to test the robustness of the damage localization algorithm to temperature variations, Lamb wave data was collected from the lug joint over a range of temperatures using a Cascade-Tek forced air lab oven. Specifically, at 13 different stages of fatigue load, the lug joint was removed from the fatigue frame, placed in the oven, and interrogated using the PZTs at temperatures of 20 °C, 40 °C, 60 °C, and 80 °C. Temperatures higher than 80 °C were not investigated due the limited temperature operation range of the bonding adhesive and the PZT wiring. After each round of sensor data collection, the lug joint was cooled to room temperature and reinstalled on the fatigue frame and the test was continued. The data from the lug joint fatigue experiment is used to validate the damage localization and prognosis algorithms. First, the prognosis model discussed in Section 3 is applied for prediction of the crack length in the lug joint. This approach is purely physics based and does not use sensor data like the localization algorithm of Section 2. The prediction results over the entire crack growth regime are shown in Figure 4. It can be seen that the crack length is predicted with very high accuracy (error < 1mm), and the error in the prediction decreases towards the end of the crack growth regime as more data is used. The confidence intervals in Figure 4 show that the algorithm is able to predict the crack length with 95% confidence over the entire crack growth regime. Note that the experimental crack length curve remains the same for all the temperatures (20 °C, 40 °C, 60 °C and 80 °C)
because the fatigue test was performed at room temperature (the sample was removed from the fatigue frame, heated in an oven only when collecting PZT signals at different temperatures, and cooled to room temperature before continuing the fatigue test). Therefore, thermal effects were not considered in the prognosis model.

![Figure 4. Prediction of the fatigue crack length in the lug joint specimen using the physics based prognosis model.](image)

Next, the damage localization method discussed in Section 2 is applied for prediction of the crack length in the lug joint. Following the steps described in Figure 1, the temperature is estimated at each fatigue cycle for which PZT sensor data is available. The time of flight and corrected velocity for each sensor path is used to calculate a temperature estimate, and the estimates from all of the sensor paths are averaged to obtain the overall estimated temperature. This process is applied to the experimental lug joint data available for the temperatures of 20 °C, 40 °C, 60 °C and 80 °C. Figure 5 shows the result of the temperature estimation. It can be seen that the temperature estimation method is very accurate for the 20 °C, 40 °C and 60 °C cases, with a mean deviation of roughly 5 °C. The inaccuracy of the temperature estimates for the 80 °C case can be attributed to the use of PZTs beyond their rated temperature operation range of 70 °C. The prior crack location probability distribution used in the probabilistic localization algorithm is next defined using a fixed prior that covers the entire expected area of crack tip locations. From finite element simulations and previous work on lug joints [3], it has been shown that under the specified loading conditions the hot spots for fatigue crack growth are the shoulders of the lug joint. Therefore, a truncated multivariate Gaussian prior probability was applied to the lug joint near the shoulder at which the crack originated with a mean location of (211, 80) mm and covariance parameters of $\sigma_{xx}$, $\sigma_{yy}$, $\sigma_{xy}$, and $\sigma_{yx}$ as 15 mm, 15 mm, 0 mm, and 0 mm, respectively. A brief discussion of the performance using the localization method with the fixed prior is given here; a more complete discussion can be found in previous work [32]. Figures 6a and 6b show the experimental and estimated crack tip locations on the lug joint at a
temperature of 20 °C for 86106 and 90417 fatigue cycles, respectively. The marker “X” shows the experimental crack tip location and “diamond marker” the estimated crack tip location.

Figure 5. Temperature estimation in the aluminum lug joint.

For the four temperatures and 13 crack lengths tested, the average crack tip localization error was found to be approximately 9 mm. The significant error and uncertainty in the localization is due to the assumed general fixed prior distribution that covers the entire crack growth area. With an adaptive and more focused prior, both the bias and variance would decrease significantly, resulting in a more useful and robust damage localization system. Finally, the proposed integrated damage localization algorithm is applied to estimate the crack tip location in the lug
joint specimen. The prognosis model is used to compute a physics based prior that is adaptively combined with the likelihood function of the data-driven localization algorithm using the particle filter for accurate crack location estimation. The number of particles in the particle filter was set to 1000, which was found to be sufficient to obtain accurate estimates of the posterior crack length distribution. Figures 7a-7d show the experimental and estimated crack tip locations at 20 °C for four different fatigue loading stages.

A comparison of Figure 6a with Figure 7a and Figure 6b with Figure 7d shows a significant increase in the prediction accuracy (and decrease in uncertainty) with use of the dynamic prior. The crack tip locations were estimated using the integrated method for all the temperatures (20 °C, 40 °C, 60 °C and 80 °C). The results show that the crack tip location is predicted with high accuracy and low uncertainty, even for a temperature of 80°C. The crack lengths at all the temperatures were then calculated using the obtained crack tip locations.
Figure 8. Crack length estimation using the proposed integrated damage localization approach.

Figures 8a-8d show the estimation of crack length using the proposed integrated approach. It can be seen that the proposed integrated algorithm is able to predict the crack lengths more accurately (to within 1mm of the experimentally observed values) than the probabilistic localization algorithm alone. Using the proposed algorithm, the search domain for the crack tip location is significantly smaller, and hence the framework is more computationally efficient. The tradeoff for this method is the computational time for using the prognosis model as a prior knowledge. Since the prognosis model uses the results from FE simulations, the parameters of which are stored in the form of dictionary, it is very computationally efficient. Overall, the total computational time is significantly reduced using the proposed approach. Figures 9a and 9b show the absolute and relative error in crack location prediction for different temperatures at various crack lengths. Absolute error is measured as the error in estimation of crack length. Relative error is measured as the error in estimated crack length with respect to the actual crack length. The maximum error in prediction of crack length is observed to occur when the temperature is 20 °C, as opposed to 80 °C, which is not intuitive. We believe this is due to the random initialization of the particles in the particle filtering scheme. The results for temperatures 40 °C, 60 °C, and 80 °C show that the average absolute and relative errors in prediction of crack length are less than 1mm and 8% respectively.
Figures 10a – 10d show the comparison of crack length predicted using different methods, i.e., prognosis, localization and integrated approach. The results show that, though the error in estimation of crack length using the localization algorithm is large, the integrated approach combines it with the predicted value (prognosis) and estimates the crack length, which is closer to the experimental crack length. Even though there is a large uncertainty associated with the localization algorithm, when combined with the dynamic prior, the uncertainty in prediction reduces as shown in Figures 10a – 10d.
5. CONCLUSIONS

A novel integrated framework has been developed for effective damage localization and prognosis in metallic structures. The method combines a physics based damage prognosis model with a data driven damage localization approach to estimate the crack growth robustly under unknown temperatures. The Lamb wave measurement based localization algorithm requires an appropriate prior knowledge of the probable damage location for reliable estimation performance. Instead of the generic and fixed prior used in previous works, the proposed method incorporates a dynamic prior obtained from the highly accurate prognosis model. Using particle filtering, the predicted crack locations from the prognostic model are iteratively combined with the estimated crack locations from the localization algorithm to obtain improved estimates. Online temperature estimation is performed for achieving robust localization performance.

The developed methodology has been validated on an Al2024-T351 lug joint subjected to fatigue loading. PZT sensor data was collected at temperatures of 20 °C, 40 °C, 60 °C and 80 °C. Results from application of the algorithm to the experimental data show that temperature estimates for 40 °C, 60 °C and 80 °C are accurate to within ±5 °C. Proceeding with crack localization using the estimated temperature, it is observed that when a generic and fixed prior is used for the probable crack location, the average crack localization error obtained is approximately 9mm. On the other hand, when the proposed integrated dynamic prior approach is employed, it is seen that the crack length can be predicted with an error of less than 1mm for most of the presented cases at various temperatures, demonstrating the benefit of incorporating the dynamic prior within the localization framework. Using the dynamic prior reduces the computational time significantly, while increasing the accuracy, since the search domain is smaller and closer to the actual crack location.
6. ACKNOWLEDGEMENTS

This research is supported by the U.S. Department of Defense, U.S. Air Force Office of Scientific Research Multidisciplinary University Research Initiative Grant, FA9550-06-1-0309, Technical Monitor Dr. David Stargel.

7. REFERENCES


