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The spin-forbidden a 4Σ−–X 2Π1/2 transition of GeH detected
in absorption using intracavity laser spectroscopy
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1Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis,
Saint Louis, Missouri 63121, USA
2Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, USA

(Received 1 December 2017; accepted 9 May 2018; published online 30 May 2018)

The a 4Σ−–X 2Π1/2 transition of GeH has been recorded in absorption for the first time using Intracavity
Laser Spectroscopy (ILS). The GeH molecules were produced in a 0.40–0.60 A DC plasma discharge
inside an aluminum hollow cathode, using 500 mTorr of Ar, 100 mTorr of H2, and 200 mTorr of
GeH4. This cathode is located within the resonator cavity of a Coherent Verdi� V-10 pumped dye
laser. Effective path lengths for this series of measurements using the ILS method ranged from 2
to 7 km. Spectra were calibrated using the absorption spectrum of I2 collected from an extracavity
cell, the I2 transmission spectrum from Salami and Ross, J. Mol. Spectrosc. 223(1), 157 (2005) and
PGOPHER’s [C. M. Western, J. Quant. Spectrosc. Radiat. Transfer 186, 221–242 (2016)] calibration
feature. Differences in peak positions between calibrated experimental spectra and the reference data
were on average less than ±0.002 cm−1. All eight branches expected to have appreciable intensity for
the transition have been identified, and isotopologue splitting was observed in features of 5 of the 8
identified rotational branches. Molecular constants have been obtained for the a 4Σ− states of 70GeH
(20.84% abundant), 72GeH (27.54% abundant), and 74GeH (36.28% abundant). The transitions were fit
using PGOPHER, holding the ground state constants fixed to the values reported by Towle and Brown
[Mol. Phys. 78(2), 249 (1993)]. The constants for the a 4Σ− state of 74GeH determined by the fit are T0

= 16 751.5524(13) cm−1, B0 = 6.764 912(33) cm−1, D0 = 0.459 60(17)× 10−3 cm−1, λSS = 9.7453(12)
cm−1, λD = 0.468(14)× 10−3 cm−1, γ = 0.077 878(84), and γS = −0.361(77)× 10−3 cm−1. Published
by AIP Publishing. https://doi.org/10.1063/1.5017958

I. INTRODUCTION

Germanium hydride is of interest because of its role in the
production of germanium thin films produced from the dissoci-
ation of Germane, GeH4.1 The electronic structure of GeH has
remained interesting to computational chemists because the
comparison between experimentally determined values and
theoretical predictions has shown the need for inclusion of
several interactions to adequately model this simple molecular
system.1–5 The incorporation of correlation between the 3d10

electrons of Ge and spin-orbit coupling is necessary to accu-
rately estimate the experimental transition energy and inter-
pret the observations.1 With added computational sophistica-
tion, the deviation of the estimated energy for the theoretical
B 2Σ+–X 2Πr transition from the observed value went from
−6%2 to 0.6%.1 In light of these most recent calculations,
Li et al.1 suggest that disagreements between the computa-
tional predictions and the previous experimental observations
of the a 4Σ−–X 2Πr transition merited further experimental
measurements.

The spin-forbidden a 4Σ−–X 2Πr transition was weakly
observed by Kleman and Werhagen in 1953 in an emission
from a King furnace using a germanium containing graphite
boat and 0.5 atm of H2.6 The experimental photographs were

a)Author to whom correspondence should be addressed: lobrien@siue.edu.
Tel.: 618-650-3562.

not reproduced in the publication because “. . .[the transi-
tion’s] weakness and the overlapping continuum do not per-
mit of an acceptable reproduction.” Budo and Kovacs7 the-
oretically discussed 4Σ–2Π transitions in a 1940 paper and
predicted that the relative intensities of 8 of the 12 possi-
ble branches for a 4Σ-Hund’s case (a) 2Π1/2 transition will
be non-zero, while 10 of the 12 possible transitions would
have a non-zero relative intensity for a 4Σ–Hund’s case (a)
2Π3/2 transition. In their experimental study, Kleman and Wer-
hagen were only able to identify 4 branches connecting to
the X 2Π1/2 component and 5 branches connecting to the
X 2Π3/2 component, and no isotopically resolved features were
observed (natural abundances are 70Ge 20.84%, 72Ge 27.54%,
73Ge 7.73%, 74Ge 36.28%, and 76Ge 7.61%). The identified
branches were fit to obtain molecular constants for the a 4Σ−

state using a non-standard Hamiltonian developed by Budo.
In 1966, Klynning8 attempted to record the a-X transition
in absorption, but was unsuccessful and instead reanalyzed
the data of Kleman and Werhagen, fitting the term ener-
gies to Hougen’s energy level expressions.9 No other studies
have reported experimental observations of this spin-forbidden
transition.

In contrast to the a 4Σ− state, the X 2Πr ground state
of GeH has been extensively studied experimentally using
Laser Magnetic Resonance (LMR) and diode laser spec-
troscopy techniques to examine pure rotational, fine-structure,
and vibrational transitions of GeH and GeD in the IR.10–15 In
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1993, Towle and Brown16 performed a comprehensive fit of all
available experimental data for the X 2Πr ground state, which
included transitions from all GeH isotopologues, excluding
those involving tritium. The result is a set of molecular con-
stants that effectively describe the ground state for the all
isotopologues of the GeH molecule, not just the most abundant
one, 74Ge1H.

In this study, the a 4Σ−–X 2Π1/2 transition has been
observed in absorption for the first time. All eight expected
branches for this transition have been identified, and the data
is in reasonable agreement with the theoretical predictions of
Li et al.1

II. EXPERIMENTAL PROCEDURE
A. Intracavity laser spectrometer

The intracavity laser used for this study has been described
elsewhere, and only a description of the modifications is pro-
vided here.17 A schematic of the instrument is provided in
Fig. 1(a), which shows a discharge plasma chamber with
Brewster angle windows contained in the resonator cham-
ber of a dye laser. A Coherent VerdiTM V-10 Laser operating
at 532 nm and set to 0.50–1.50 W is used to pump 3 mM
of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-
4H-pyran (DCM) laser dye in 2-phenoxy-ethanol (EPH), cir-
culated through a Spectra Physics sapphire nozzle at a pres-
sure of ∼80 psi. This produces tunable laser output over the
14 800–16 600 cm−1 range with a maximum power output of
150 mW. The standing wave 3-mirror dye laser contains a flat
output coupler, OC, a curved fold mirror (f = 50 mm), FM,
and a curved high reflector (f = 75 mm), HR. The operating
wavelength of the dye laser is controlled with a tuning wedge,

TW, located in a rotating mount attached to an xyz translation
stage. The TW is mounted at Brewster’s angle to minimize
power losses. Tuning can be accomplished using three differ-
ent approaches: rotation, vertical translation, and horizontal
translation. The rotation of the TW through the Brewster’s
angle plane of the mount broadly tunes the laser and serves as
the coarse adjustment to the operational wavelength range. It
was found that rotating the TW so that the thickness gradient
of the wedge is at ∼45◦ from vertical produced the broadest
spectral output. Vertical translations serve as an intermediate
adjustment, and fine tuning of the laser is accomplished using
horizontal translation of the TW. With this assembly, a sin-
gle set of optics and two laser dyes (DCM and R6G) enabled
the dye laser to be tuned from 585 to 675 nm using less than
2.50 W of pump power.

The dye laser output is passed through an extracavity I2-
cell before being directed through an acousto-optic modulator
(AOM) and into a 2 m long Spex 2062 monochromator. The
dispersed beam is then imaged onto a 1024-channel EG & G
diode array detector, resulting in individual scans with spec-
tral width of approximately 6 cm−1. The spectral width is
determined by the dispersion of the diffraction grating at a
given order and the physical width of the diode array detec-
tor. The output from the detector is read using a GPIB board
and software program OMA88. The dye laser is operated in an
intentionally broadband ILS fashion using two AOMs with a
pulse-and-delay generator. The timing sequence is monitored
by directing a portion of the dye-laser output onto a photodiode
connected to an oscilloscope. The first AOM is inline with the
pump laser and dictates the total cycle time: at the start of the
sequence, AOM1 is switched off and the pump beam is directed
into the dye jet. Each sequence ends when AOM1 is switched
on and diffracts the pump beam into a beam stop reducing the

FIG. 1. (a) Schematic of the Intracavity Laser Spectrometer and (b) Timing sequence for two cycles of ILS operation, with the portion of the pump laser directed
into the dye cavity by AOM1 shown in purple, the portion of the dye laser directed into the monochromator by AOM2 shown in blue, and the laser dye power
output measured by a photodiode shown in green. During the generation time, tg, molecular absorption is enhanced by the laser action as AOM1 is off during
the “on” period of the laser and AOM2 directs dye laser output onto the photodiode, but not the monochromator. After tg, for a time period termed the viewing
window, VW, AOM2 directs a high percentage of the dye laser output into the monochromator, leading to a decreased intensity monitored by the photodiode.
At the completion of the VW period, AOM1 diverts the pump laser so that the dye excitation is below the lasing threshold, terminating the dye laser output and
resetting the system for the next cycle. For this study, a cycle time of 300 µs was used with a detector exposure window of 0.8 s, making each spectrum the sum
of 2700 viewing windows.
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pump power below the lasing threshold of the dye. The second
AOM is used to set the effective path length and detector view-
ing window for operation of each cycle. During this period
after dye laser initiation termed the generation time, tg, any
molecular absorbance will be enhanced by the laser action of
the system. The effective path length, Leff , can be determined
with17

Leff = c tg

(
l
L

)
, (1)

where l is the region in the cavity occupied by the absorber
(i.e., the length of the hollow cathode) and L is the length
of the laser cavity. After tg, the second AOM directs ∼95%
of the beam into the monochromator for the duration of the
viewing window. For this study, a 150 mm long aluminum
hollow cathode was installed in a 1.1 m long laser cavity, and
the generation times used ranged from 50 to 200 µs, resulting
in effective path lengths of 1.8–7.5 km. An illustration of the
timing sequence used for the ILS process as observed by the
photodiode is provided in Fig. 1(b).

To perform the intracavity spectroscopy measurements, a
reaction chamber with two Brewster angle windows is located
between the FM and TW optical components. The reaction
chamber includes a hollow metal cathode for plasma forma-
tion. Ports to the reaction chamber include gas supply and
exhaust valves, enabling variation in the gas flow and com-
position. The dye laser is aligned so that it passes through
the hollow cathode, ensuring that any material formed in the
plasma discharge around the cathode will be in the beam path.
For this study, the reaction chamber was maintained at a total
pressure of 800 mTorr with a gas mixture of 62.5% Ar, 25.0%
GeH4, and 12.5% H2. All gas flows were regulated using MKS
mass flow controllers.

The GeH molecules were produced in a plasma formed
when a discharge current of 0.40–0.60 A DC was applied to an
aluminum cathode. It was found that spectral features due to
GeH were very strong when the plasma was initially engaged
but faded quickly, while features due to GeH2 grew as the dis-
charge continued. Consequently, to maximize the GeH signal,
it was necessary to record spectra as a single diode-array scan
synchronized with plasma initiation, resulting in a relatively
noisy background.

The spectrum of GeH between 16 000 and 16 600 cm−1

was collected as a series of overlapping ∼6 cm−1 segments.
Each spectral segment consisted of a spectrum collected of
the plasma discharge, a spectrum collected in the absence of
the plasma, and a spectrum from the external heated iodine
cell used for calibration. Data processing and calibration are
discussed in detail in Sec. II B.

The a 4Σ−–X 2Π1/2 transition of GeH was identified in the
region between 16 000 and 16 600 cm−1. The 15 000–15 550
cm−1 region was also investigated, but the a 4Σ−–X 2Π3/2 tran-
sition previously reported in that region6 could not be identified
in the observed data.

B. Data processing to produce
a concatenated spectrum

The process used to produce a finalized spectrum can be
summarized in four steps: conversion of the raw data into a

transmission spectrum, calibration using iodine spectra, con-
catenating overlapping plasma spectral segments to form a
single spectrum file, and the determination of spectral line
positions from the obtained data.

1. Data conversion and calculation of derivatives

Data conversion and derivative calculation are performed
with an in house Visual Basic program, ANEW. To produce
a plasma spectrum for a given monochromator position, the
baseline current (recorded when the laser was blocked by a
beam stop) is subtracted from all data, then the plasma and
I2 spectra are divided by the background spectrum for the
specific monochromator position, producing the transmission
spectrum that is used for the analysis. The 1024-diode array
channels are assigned tentative wavenumber positions from an
empirically derived polynomial that correlates the order of the
diffraction grating, a grating equation for the monochroma-
tor position, and the detector channel number to the vacuum
wavenumber of the detected signal.18 These initial assign-
ments are typically accurate to ±0.1 cm−1. Savitzky-Golay
polynomials for the 1st and 2nd derivative of the transmis-
sion spectrum are then calculated, and text files are produced
that contain the 1024 initial wavenumber positions, along with
their corresponding transmission and 1st derivative and 2nd
derivative values.

2. Calibration of iodine spectra using PGOPHER

The text files for the processed plasma and I2 spectra are
uploaded to PGOPHER19 using the Overlay window option
(see http://pgopher.chm.bris.ac.uk/Help/overlaying.htm for a
walk-through of this process). Additionally, the supplemen-
tary material text file from the paper by Salami and Ross20

that contains the transmission spectrum of I2 from 14 250
to 20 000 cm−1 is uploaded. Both spectra must be inverted
because peak assignments can only be made to peak max-
ima using PGOPHER. Narrow fully resolved experimental
I2 features were assigned to their corresponding peaks in the
reference spectrum using the process outlined in the help sec-
tion of PGOPHER’s website (http://pgopher.chm.bris.ac.uk/
Help/calibrating.htm). After peaks were assigned, the cali-
brated wavenumber positions and corresponding channel posi-
tions were fit to a 2nd order polynomial using PGOPHER’s
Calibration Window. Ten to thirty lines over approximately
6 cm−1 were selected from each I2 spectrum for calibra-
tion depending on the quantity and quality of reference lines
at a given monochromator position. The average deviation
between the assigned reference I2 line positions and calcu-
lated polynomial positions was typically ±0.002 cm−1. Once
the iodine files are calibrated, the dispersion polynomials
obtained from the calibrations are applied to the correspond-
ing plasma spectra. The individual calibrated plasma spec-
tra can then be joined to create a single data file that con-
tains all the experimental data collected at a constant set of
conditions.

3. Merging of calibrated plasma files

The calibrated plasma files are concatenated using the
“Join to. . .” feature of PGOPGHER Overlays. To form the

http://pgopher.chm.bris.ac.uk/Help/overlaying.htm
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-047820
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-047820
http://pgopher.chm.bris.ac.uk/Help/calibrating.htm
http://pgopher.chm.bris.ac.uk/Help/calibrating.htm
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merged plasma file, two overlapping spectra are displayed
on the PGOPHER screen, making sure that the plot area
has a normalized and not an arbitrary vertical scale. The
overlap region is then examined to find a location where
the overlapping features are observed with similar intensity.
Once this crossover point has been identified, the spectra
are concatenated by right-clicking on the point and select-
ing “Join to. . .” from the popup menu. The next spec-
trum in the sequence is then displayed, and the overlap
process is repeated until a single complete spectrum con-
taining data for the entire spectral region investigated is
obtained.

4. Calculation of line positions

After the merged plasma file has been produced, 1st and
2nd derivatives of the merged spectrum are calculated using
the “Smooth” function of the PGOPHER Overlay window.
The first derivatives were calculated using 2nd order Savitzky-
Golay polynomials. In determining appropriate parameters for
calculating the Savitzky-Golay 1st derivatives, it was found
that using a large smoothing width resulted in inaccurate
line positions for blended spectral features, so the minimum
smoothing width of 5 data points was used. The 2nd derivatives
were calculated using a 4th order Savitzky-Golay polynomial
with a smoothing width of 9. As the 2nd derivatives were used
to distinguish between molecular signals and random noise,
a higher polynomial order and smoothing width were applied
to reduce the magnitude of spurious fluctuations. To calcu-
late peak positions, a set of Excel worksheets were created
to identify zero-crossings in the 1st derivative data, determin-
ing the peak positions as the x-intercept for a line between
the points on either side of the zero-crossing. The determined
positions are then added to a text file that can be imported
by PGOPHER as a linelist. For exceptionally noisy spectra,
the number of zero-crossings in the 1st derivative data can
be cumbersome and greatly reduce the utility of the linelist.
In these cases, a threshold for “real” spectral features is esti-
mated from the 2nd derivative data and used as a filter for
reported line positions by only considering zero-crossings
that correspond to 2nd derivative values exceeding this
threshold.

III. RESULTS AND DISCUSSION
A. Branch assignment

A portion of the electronic spectrum of GeH is displayed
in Fig. 2. The four branches for the a 4Σ−–X 2Π1/2 transition
reported by Kleman and Werhagen,6 the PQ1, QR1, PP21, and
RP41 branches, were readily identifiable in the experimental
data. The blue-degraded RP41 branch was somewhat difficult
to identify because this branch overlaps the 00

0 band of the
Ã 1B1–X̃ 1A1 transition of GeH2.21 The molecular constants
from Smith et al.21 for 70GeH2, 72GeH2, 74GeH2, and 76GeH2

were used to produce a simulated spectrum for the transi-
tion to prevent possible assignment of GeH2 features to GeH.
Isotopologue structure was partially resolved in the PQ1 and
PP21 branches for 4 germanium isotopes: 70Ge, 72Ge, 74Ge,
and 76Ge, as can be seen in Fig. 3. Once these four branches
were identified and assigned, a preliminary fit of the data was
performed using PGOPHER.19 Using the predicted branch
structure from PGOPHER based on the initial fit, the four
additional branches predicted to have appreciable intensity by
Budo and Kovacs,7 the QQ21, RQ31, sR31, and sQ41 branches,
were identified and assigned in the experimental data. In total,
79 transitions were assigned to 70GeH, 72GeH, and 74GeH.
In all cases at low J (J′′ < 5.5), the isotopologue splitting in
the branches is too small to be fully resolved at the Doppler-
limited resolution. However, in 5 of the 8 identified branches, at
least 2 features are isotopically resolved. In total, 26 of the 79
assigned rotational transitions are isotopically resolved. The
less abundant 76GeH did not provide enough unique spectral
features to justify a rotational analysis.

B. Obtaining molecular constants

Once branch assignments were obtained, the experimen-
tal data were fit to the Hamiltonian for a 4Σ−–2Πr transition
using PGOPHER.19 The X 2Πr ground state constants were
held fixed to the values provided by Towle and Brown16 from
their comprehensive fit of IR spectra for all isotopologues of
GeH. Details of the Hamiltonian and the ground state parame-
ters used for the fit are provided in the supplementary material.
The spin-dependent interaction terms for Σ states of quartet
and higher multiplicity used by PGOPHER were developed

FIG. 2. Portion of the ILS spectrum of
GeH observed in the dissociation of
GeH4 in a plasma. This image is a com-
pilation of ∼10 individually collected
spectra. The R1, Q1, and P21 branches of
the a 4Σ−–X 2Π1/2 transition of 74GeH
are indicated for clarity. Many of the
unassigned features have been attributed
to GeH2 upon comparison with the work
of Smith et al.21

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-047820
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FIG. 3. Experimental plasma spectrum (converted to absorbance) of the
Q1(8.5) and P21(9.5) lines of the a 4Σ−–X 2Π1/2 transition of GeH. Peaks due
to 70GeH, 72GeH, and 74GeH are clearly identifiable and have been highlighted
in blue with simulated line positions from the PGOPHER19 fit. There are weak
shoulders due to 76GeH to the blue of the main peak that are insufficiently
resolved to justify analysis.

by Brown and Milton22 based on the initial work of Hougen.9

Hougen proposed that a Σ state with even multiplicity has
S−½ spin-spin parameters and S+½ spin-rotation parameters.
A 4Σ state would then have one spin-spin parameter, λSS , and
two spin-rotation parameters, namely, a first-order parame-
ter, γ, and a third-order parameter, γS . For spectral features
that were unblended and fully resolved, line positions were
assigned using the 1st derivative zero crossings (vide supra)
and were assigned an expected uncertainty of 0.005 cm−1 in the
fit. Spectral features that were degraded but not fully resolved
were assigned line positions manually and assigned an uncer-
tainty of 0.01 cm−1. Spectral features that were obscured
or partially overlapped by GeH2 features were assigned line
positions as “best guesses” and given a statistical weight of
0.03 cm−1. Of the 237 individual transitions included in the
fit, 71 transitions were held to 0.005 cm−1, 132 transitions
were held to 0.01 cm−1, and 34 were held to 0.03 cm−1. For
74GeH, 45 of the 79 transitions were held to 0.005 cm−1, but
just 18 transitions were fully resolved for 72GeH, and only 8
transitions were fully resolved for 70GeH. To fit the line posi-
tions of the 74GeH a 4Σ−–X 2Π1/2 transition, it was necessary to

include λSS , γ, and γS as well as a term energy (T ), a rotational
constant (B), a centrifugal distortion term (D), and a centrifu-
gal spin-spin term (γD) in the PGOPHER 4Σ− Hamiltonian. In
the fit of 70GeH and of 72GeH, γS was not determined within
the experimental uncertainty due to the more limited number
of resolved lines available for the less abundant isotopologues
and, as a consequence, was held fixed to the value determined
for 74GeH. The results of the fit are shown in Table I; our
results for 74GeH are compared with results from the work
of Kleman and Werhagen6 and Klynning.8 The line positions,
assignments, and residuals are provided in tables in the sup-
plementary material, along with the correlation matrix for the
fit.

C. Interpretation of results

Results from the fit are in reasonable agreement with those
from the work of Kleman and Werhagen6 and Klyinning;8

however, the values obtained in this study are determined to
a much higher level of precision. Deviations between the val-
ues for parameters obtained in this study and the previously
reported values that exceed the estimated standard deviations
from the fit (reported in parentheses in Table I) not only are due
to the quality of the experimental apparatus available in 1953
in comparison to present instrumentation but are also affected
by slight differences in the Hamiltonian models used in the
previous analyses.

The quality of the fit of the partially resolved isotope
structure can be evaluated by comparing the ratios of the rota-
tionally dependent parameters determined by the fit to the
expected mass dependence of the parameters. The relation-
ships between rotational constants and the reduced masses of
the isotopologues were outlined by Dunham and summarized
by Herzberg,23

Bi
e = µ/µ

iBe, (2)

Di
e =

(
µ/µi

)2
De, (3)

where the i superscript denotes the less abundant isotopo-
logue, Be values are equilibrium rotational constants, De values
are equilibrium centrifugal distortion constants, and µ values
are reduced masses of the isotopologues. Using these equa-
tions, the molecular constants for less abundant isotopologues
can be calculated from corresponding constants for the more

TABLE I. Molecular constants for the a 4Σ� state of GeH (in cm�1). Experimental values from other workers are shown in italics. Values in parentheses
represent 1σ and are scaled to the last significant digit of the reported parameter.

a 4Σ� state T0 B0 D0 × 103 λSS λD × 103 γ γS × 103 RMSa N

70GeH 16 751.9133(20) 6.769 116(50) 0.456 04(26) 9.7533(17) 0.373(29) 0.080 63(12) �0.378b 0.0101 67c

72GeH 16 751.7314(16) 6.767 009(44) 0.458 45(24) 9.751(14) 0.387(23) 0.079 24(11) �0.378b 0.0078 69c

74GeH 16 751.5529(13) 6.764 917(32) 0.459 66(16) 9.7448(11) 0.471(17) 0.077 934(81) �0.378(75) 0.0060 67c

74GeHd 16 758.0 6.775 0.472 6.4 0.04
74GeHe 16 746.50(4) 6.755 4(5) 0.460(1) 6.51(2) 0.041(1) �2.8(1) 0.1059 79

a
√
Σ(Obs − Calc)2/N .

bHeld fixed to the value determined for 74GeH.
cLine positions for obscured features that were bracketed by identified transitions were roughly approximated and held to 0.03 cm�1 in the fit. The deviations between the fit and these
approximate values were omitted from the RMS calculation due to their somewhat arbitrary nature.
dValues from Kleman and Wehagen;6 the zero-point energy of the X 2Π1/2 state has been added to the term value provided in this reference.
eValues from Klynning;8 the term energy from this reference has been modified so that the energy of the X 2Π1/2 state is set to zero.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-047820
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-047820


204306-6 Harms, O’Brien, and O’Brien J. Chem. Phys. 148, 204306 (2018)

TABLE II. The B0 and D0 values (in cm�1) for 70GeH and 72GeH obtained from the PGOPHER fit of the
a 4Σ�–X 2Π1/2 transition of GeH are compared to values predicted from the Dunham equations and the experimental
constants for 74GeH. In the third column, deviations between the determined and predicted values are given in
terms of 1σ.

a 4Σ� state B0 from fit

74GeH 6.764 917 (32)
Calculated B0 from 74GeH Value (Fit-calc)/(σFit)

72GeH 6.767 009 (44) 6.767 446 �9.93
70GeH 6.769 116 (50) 6.770 118 �20.04

D0 × 103 from fit

74GeH 0.000 459 66 (16)
Calculated D0 × 103 from 74GeH value (Fit-calc)/(σFit)

72GeH 0.000 458 45 (24) 0.458 65 �6.47
70GeH 0.000 456 04 (26) 0.459 01 �16.64

abundant isotopologue. Because 74GeH is 1.32 times more
abundant than 72GeH and 1.75 times more abundant than
70GeH, more transitions can be assigned to 74GeH than to
the less abundant isotopes and many line positions assigned to
these weaker features can be skewed slightly by the close-lying
transition of the more abundant isotopologue. To assess the
quality of the fit determined for 70GeH and 72GeH, the values
determined from the fit for B and D are compared to the val-
ues calculated using Eqs. (1) and (2) in Table II. One standard
deviation for the parameter from the fit is given in parentheses,
and the deviation between the determined and calculated value
has been scaled to match these values. As is to be expected,
the magnitude of deviations from the calculated values for
70GeH are larger than those for 72GeH. While both determined
B and D values agree moderately with the expected isotopo-
logue shift, the deviations are larger in scale than the reported
uncertainties from the fit. This could be because the compar-
ison values are specific to v = 0 and Eqs. (1) and (2) are only
rigidly descriptive for equilibrium values,23 or the deviations
could be due to the limited data for the lighter isotopologues.
In most cases, isotopologue splitting was not observed below
J′′ = 5.5, which is already 237 cm−1 above the ground state.
The observed transition with the highest ground state rota-
tional momentum was the qR1(16.5), excited from a state

1915 cm−1 higher than the ground state and only intense
enough to be observed because the isotopologues have yet to
separate in this branch. During data acquisition, it became clear
that gentle discharge conditions enhanced the GeH signal,
while more intense discharge conditions favored the formation
of GeH2. As a consequence, a more energetic discharge did not
always result in a more intense GeH absorption signal from
high J ′′ transitions due to the enhancement of overlapping
GeH2 peaks. This is likely the reason that no a 4Σ−–X 2Π3/2

transitions were observed, which lie in a region of strong GeH2

signal.16

A recent computational paper1 suggested that discrepan-
cies between experimental constants for the a 4Σ− state and
their computational counterparts required more precise exper-
imental data to adequately evaluate the quality of the different
computational approaches used to model the lowest 4Σ− state
of GeH. The experimental T0, B0, D0, and r0 values are com-
pared to the reported computational values from Refs. 1–3,
and 5 in Table III. When αe values were not determined,
Be, De, and re values are used instead of v = 0 values. The
T0 values evaluate the combined accuracy of the excitation
energy and vibrational frequency. The B0 and r0 values eval-
uate the accuracy of the calculated bond length, and the D0

values evaluate the combined accuracy of the bond length and

TABLE III. Comparison of experimentally derived parameters (in cm�1) and their computational counterparts
for the a 4Σ� state of 74GeH.

a 4Σ� state of 74GeH T0 B0 D0 × 103a r0 (Å)

Experiment 16 751.5524 6.764 912 0.459 60 1.5831
Li et al. 20151

MRCI + Q and core-valence effect 16 644.98 6.8744 0.489 95 1.570
MRCI + Q, no core-valence effect 16 696.77 6.8519b 0.340 6b 1.573b

Li et al. 20135 c

CCSD(T)/CBS 16 800.65 6.976b 0.390 1b 1.559b

Bruna and Grein 20013

MRCDI/full CI 15 069.5 6.806b 0.398 0b 1.578b

Balasubramanian and Li 19882

MCSCF (CAS SCF)+CI 14 732.5

aCalculated using the Kratzer Relationship D = 4B3ω�2.
bValues represent equilibrium constants.
cExcitation Energy and Bond Length from the CCSD(T)CBS, Harmonic frequency from the CCSD(T)/cc-pV5Z level of theory.
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vibrational frequency. The term energy is best predicted by
the coupled-cluster single and double excitation with pertur-
bative triples at the complete basis set limit [CCSD(T)/CBS]
method from Li et al.5 and the multi-reference configuration
interaction with the Davidson correction (MRCI+Q) method
without the Core-Valence Effect from Li et al.,1 both accu-
rate within 60 cm−1 of the observed value. The inclusion of
the Core-Valence Effect actually resulted in a comparable but
slightly worse description of the system. The level of agree-
ment between the predicted T0 and determined excited state
energy strongly suggests the excited state vibrational assign-
ment as v′ = 0, which is confirmed experimentally by a very
small shift in transition energy for the GeH isotopologues.
Differences between predicted bond lengths and the derived
value from the experimental B0 values were all in reasonable
agreement, the worst being the CCSD(T)/CBS method of Li
et al.5 with a percent difference of −1.52% from the deter-
mined value. No method predicted the centrifugal distortion
constant particularly well, but the best case was the MRCI+Q
and Core-Valence Effect method of Li et al.1 with a percent
difference of 6.6% from the determined value. This is likely
due to the reliance of the computational values provided in
Table III upon the Kratzer relationship23 and reported Be and
ωe values, rather than a direct computational determination of
the centrifugal distortion effects.

The spin-spin parameter, λss, is expected to have a direct
contribution from spin-spin dipolar interactions and a sec-
ond order spin-orbit contribution that results from interactions
with nearby states with the same electron configuration.24 The
a 4Σ−, A 2∆, and 1 2Σ+ states arise from the 8σ29σ14π2

configuration.1 The isoconfigurational second order contri-
bution to λss and λSO, can be estimated using the rela-
tionship for a σπ2 configuration from Lefebvre-Brion and
Field,25

λSO =
1
6

[
A

(2Π ,σ2π
]2

E(2Σ+) − E(4Σ−)
, (4)

where, for GeH, A(2Π,σ2π) is the spin-orbit splitting of the
8σ29σ24π1 X 2Πr ground state, reported to be 893 cm−1 by
Towle and Brown,16 E(2Σ+) is computed to be 32 293 cm−1

by Li et al.,1 and E(4Σ−) is determined to be 15 810 cm−1 in
this work. The resulting λSO of 8.05 cm−1 is of similar mag-
nitude to the determined λss value of 9.75 cm−1 and indicates
that the direct spin-spin interaction in the a 4Σ− state is quite
small.

IV. CONCLUSIONS

An intracavity dye-laser absorption spectrometer has been
used to record the absorption spectrum of the spin-forbidden
a 4Σ−–X 2Π1/2 transition of GeH. Isotopologue structure was
observed, and a rotational analysis was performed on transi-
tions of the three most abundant isotopologues: 70GeH, 72GeH,
and 74GeH. The obtained rotational constants for the less

abundant isotopes are found to be in reasonable agreement
with the values predicted from the Dunham equations. The
vibrational assignment of this transition, which was ambigu-
ous in the initial report, has been assigned as the (0-0) band due
to the magnitude of the isotopic shift and the strong agreement
between theory and experiment.

SUPPLEMENTARY MATERIAL

See supplementary material for Hamiltonian elements
used by PGOPHER;19 ground state constants for the X 2Πr

state from Towle and Brown16 that were used in the fit;
line positions, assignments, and residuals for the fit of the
a 4Σ−–X 2Π1/2 transition of GeH; and the correlation matrices
for parameters associated with the fit.
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