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needed to determinate the organization of
telomeres in this insect order.
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Caudal Spotting in the
Beacon Fish (Hemigrammus
ocellifer Characidae)

J. S. Frankel

The beacon fish (Hemigrammus ocellifer)
exhibits two phenotypes associated with
spotting at the base of the caudal fin, with
fish either possessing (H. o. ocellifer) or
lacking (H. o. falsus) a prominent red spot
in this region. Segregation patterns ob-
served from the progenies of 15 different
crosses support a hypothesis that caudal
spotting in this species is controlled by a
single gene with two alleles, for which the
caudal spotting allele is completely domi-
nant.

Fishes comprising the Characidae and sev-
eral other closely related teleost families
make up the traditional characins, a group
of about 200 African and 1,000 South, Cen-
tral, and southern North American species
(Mills and Vevers 1982). Fishes in the ge-
nus Hemigrammus (Characidae) are partic-
ularly popular with aquarium hobbyists
since they not only exhibit a wide variety
of attractive coloration and marking pat-
terns, but also are easily maintained and
bred. The latter makes them ideally suited
to environmental, behavioral, and genetic
investigations (Brown et al. 1999, 2000;
Buehrnheim and Fernandes 2001; Frankel
2000; Mikheev and Pakul’skaya 1989; Mikh-
eev et al. 1992; Zhujkov and P’yanov 1993).

Within the species complex Hemigram-
mus ocellifer (beacon fish), two subspe-
cies, H. o. ocellifer and H. o. falsus, are
commonly recognized (Mills and Vevers
1982). Both subspecies are indigenous to
northern South America. Phenotypically
beacon fish are brown to greenish-yellow
in color with a silvery iridescence. At the
level of the dorsal fin, a dark transverse
bar surrounded by striking golden-yellow
spots characterizes the species and gives
it its popular name. While both subspecies
share these basic coloration and marking
patterns, a brilliant red spot at the base of
its caudal fin further distinguishes H. o.

ocellifer. The inheritance of this spotting
pattern is of particular interest, since it
probably serves as an eyespot, mimicking
the red color of the iris of the eye. As a
result of recent investigations on the in-
heritance of coloration patterns in Hemi-
grammus (Frankel 2000) and on caudal pe-
duncle banding in paradisefish (Frankel
2001), the present study was undertaken
to ascertain the mode of inheritance of
caudal spotting in the beacon fish.

Materials and Methods

Juvenile specimens of H. o. ocellifer and
H. o. falsus were obtained from a local
wholesale distributor in Virginia and
maintained in separate 76 L holding tanks
at 24�C. Male and female fish exhibiting
the phenotypes were selected at random
from stock specimens, placed in separate
76L tanks, and allowed to develop at 24�C
until sexually mature. Optimal water con-
ditions were provided for all fish (i.e., wa-
ter hardness � 5, pH 6.5, temperature
24�C) (Axelrod and Vorderwinkler 1995;
Mills and Vevers 1982). All progeny for
this study were obtained from artificial
fertilizations as employed for the cypri-
nid fishes Brachydanio rerio and B. albol-
ineatus ( Frankel and Hart 1977; Hart and
Messina 1972). Parentals exhibiting either
the spotted (S) or unspotted ( U) pheno-
type, along with F1 progeny, were used in
a series of 29 crosses ( Table 1). Embryos
from all crosses were incubated at 24�C
in 250 ml fingerbowls containing tank wa-
ter. Dead or developmentally arrested
embryos were removed daily. Fry
hatched 20–24 h after fertilization and
were free swimming 48–72 h after hatch-
ing. Progeny groups were placed in sep-
arate 36 L rearing tanks, were fed initially
on rotifers, and were allowed to develop
until their phenotype could be visually
determined. Phenotypic data of all prog-
eny were recorded and subjected to chi-
square analysis. Pooled and heterogene-
ity chi-square tests were also performed,
treating the U � F1 and F1 � F1 progenies
as single large progenies in an analysis of
overall goodness-of-fit.

Results and Discussion

Table 1 presents data for the proposed ge-
notypes of parentals, and observed phe-
notypic numbers, expected ratios, and
probability of fit for H. ocellifer analyzed
for the mode of inheritance of caudal spot-
ting for corresponding progeny groups.
Parental fish and progeny from all crosses
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Table 1. Proposed genotypes (PG) and observed phenotypic numbers, expected ratios, degrees of
freedom (df), chi-square values (�2), and probability of fit (P) for crosses among spotted and unspotted
Hemigrammus ocellifer

Parentsa Phenotypic numbers

Cross no. � (PG) � (PG) Spotted
Un-
spotted

Expected
ratio df �2 Pb

1 S-I (AA) � S-1 (AA) 16 0 1:0 — — —
2 S-II (AA) � S-1 (AA) 25 0 1:0 — — —
3 S-II (AA) � S-2 (AA) 20 0 1:0 — — —
4 S-III (AA) � S-2 (AA) 22 0 1:0 — — —
5 S-III (AA) � S-3 (AA) 18 0 1:0 — — —

Pooled 101 0 1:0 — — —
6 U-I (aa) � U-1 (aa) 0 17 0:1 — — —
7 U-II (aa) � U-2 (aa) 0 24 0:1 — — —
8 U-III (aa) � U-3 (aa) 0 26 0:1 — — —
9 U-IV (aa) � U-4 (aa) 0 17 0:1 — — —

10 U-I (aa) � U-4 (aa) 0 14 0:1 — — —
Pooled 0 98 0:1 — — —

11 S-I (AA) � U-1 (aa) 14 (F-I and F-1) 0 1:0 — — —
12 S-II (AA) � U-2 (aa) 20 (F-II and F-2) 0 1:0 — — —
13 U-I (aa) � S-2 (AA) 24 (F-III and F-3) 0 1:0 — — —
14 U-III (aa) � S-3 (AA) 19 (F-IV and F-4) 0 1:0 — — —
15 S-III (AA) � U-4 (aa) 18 (F-V and F-5) 0 1:0 — — —

Pooled 95 0 1:0 — — —
16 U-I (aa) � F-2 (Aa) 8 12 1:1 1 0.800 .3711
17 U-II (aa) � F-3 (Aa) 10 12 1:1 1 0.182 .6698
18 F-I (Aa) � U-2 (aa) 11 10 1:1 1 0.048 .8273
19 F-III (Aa) � U-4 (aa) 14 11 1:1 1 0.360 .5485
20 F-IV (Aa) � U-1 (aa) 13 10 1:1 1 0.391 .5316
21 F-V (Aa) � U-3 (aa) 11 15 1:1 1 0.615 .4328
22 U-III (aa) � F-4 (Aa) 10 9 1:1 1 0.053 .8185
23 U-IV (aa) � F-1 (Aa) 12 15 1:1 1 0.333 .5637

Total 8 2.782 .9472
Pooled 89 94 1:1 1 0.137 .7117
Heterogeneity 7 2.645 .9157

24 F-I (Aa) � F-2 (Aa) 13 5 3:1 1 0.074 .7855
25 F-II (Aa) � F-1 (Aa) 19 7 3:1 1 0.051 .8208
26 F-III (Aa) � F-4 (Aa) 24 7 3:1 1 0.097 .7557
27 F-III (Aa) � F-5 (Aa) 15 8 3:1 1 1.174 .2786
28 F-IV (Aa) � F-3 (Aa) 22 9 3:1 1 0.269 .6041
29 F-V (Aa) � F-4 (Aa) 12 1 3:1 1 2.077 .1495
30 F-V (Aa) � F-5 (Aa) 20 6 3:1 1 0.051 .8208

Total 7 3.793 .8032
Pooled 125 43 3:1 1 0.032 .8586
Heterogeneity 6 3.761 .7089

a S designates H. o. ocellifer parentals; U designates H. o. falsus parentals; F designates F1 offspring.
b The probability for all chi-square tests is greater than .05, thus observed results for all matings fit the expected

ratio according to Mendelian monohybrid inheritance.

displayed either the spotted or unspotted
phenotype. H. o. ocellifer females S-I, S-II,
and S-III, and males S-1, S-2, and S-3 were
scored as homozygous for a dominant al-
lele, as crosses involving these individuals
always resulted in spotted progeny (cross-
es 1–5, 11–15). H. o. falsus (U-I, U-II, U-III,
U-IV females and U-1, U-2, U-3, U-4 males)
were scored as homozygous recessives, as
crosses between these individuals consis-
tently bred true (crosses 6–10). Reciprocal
crosses between H. o. ocellifer and H. o.
falsus parentals always resulted in spotted
fry (crosses 11–15). Further, when F1 fishes
(F-I, F-III, F-IV, F-V, F-1, F-2, F-3, and F-4)
were mated with H. o. falsus parentals,
spotted and unspotted progeny resulted
in a satisfactory fit to a 1:1 ratio (crosses
16–23), indicative of mating between het-
erozygous and homozygous recessive in-
dividuals. Complete dominance of caudal
spotting was further substantiated by F1 �

F1 crosses that resulted in the expected 3:
1 proportions (crosses 24–30).

Results of this study illustrate that seg-
regation for the spotted and unspotted
phenotypes of H. ocellifer clearly fit an au-
tosomal monogenic pattern of inheritance,
as chi-square tests for individual and
pooled progenies do not deviate signifi-
cantly from expectations. Results of het-
erogeneity tests also support the accep-
tance of the null hypothesis for this data.
Further, the data also suggest complete
dominance of the ‘‘ocellifer’’ phenotype,
since there is no perceptible difference in
the appearance of spotting between H. o.
ocellifer parentals and the spotted F1 het-
erozygous fish. This prominent red spot at
the base of the caudal fin most likely
serves as an eyespot, as it appears to
mimic the coloration of the iris of the eye
in this species and probably provides
some selective advantage by giving the

fish a false ‘‘head’’ to confuse predators. A
similar pattern of inheritance has been re-
ported for caudal peduncle banding in the
spike-tailed paradisefish (Pseudosphro-
menus cupanus Belontiidae), which is also
controlled by a completely dominant al-
lele that specifies the banded phenotype
(Frankel 2001). Since the two subspecies
are traditionally distinguished on the ba-
sis of their coloration patterns, it would
appear that a revaluation of the ocellifer-
falsus complex is warranted within the ge-
nus Hemigrammus.
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