The NCAA Division I Men's Basketball Committee annually selects its national championship tournament's at-large invitees, and assigns seeds to all participants. As part of its deliberations, the Committee is provided a so-called "nitty-gritty report" for each team, containing numerous team performance statistics. Many elements of this report receive a great deal of attention by the media and fans as the tournament nears, including a team's Ratings Percentage Index (or RPI), overall record, conference record, non-conference record, strength of schedule, record in its last 10 games, etc. However, few previous studies have evaluated the degree to which these factors are related to whether a team actually wins games once the tournament begins. Using nitty-gritty information for the participants in the 638 tournament games during the 10 seasons from 1999 through 2008, we use stepwise binary logit regression to build a model that includes only eight of the 32 nitty-gritty factors we examined. We find that in some cases factors that receive a great deal of attention are not related to game results, at least in the presence of the more highly related set of factors included in the model.
- binary logit,
- stepwise,
- committee decision,
- performance metrics
Available at: http://works.bepress.com/j_coleman/1/
Originally published in the Journal of Quantitative Analysis in Sports. Volume 5, Issue 3.
The final publication is available at www.degruyter.com
http://dx.doi.org/10.2202/1559-0410.1165