An exact bound for the inner product of vectors in $\mathrm{C}^{\wedge} \mathrm{n}$

Iosif Pinelis, Michigan Technological University

An exact bound for the inner product of vectors in \mathbb{C}^{n}

Iosif Pinelis

Abstract. It is shown that $1 / 2$ is the exact upper bound on the difference $\sum_{k=1}^{n}\left|x_{k}\right|^{2}\left|y_{k}\right|^{2}-$ $\left|\sum_{k=1}^{n} x_{k} y_{k}\right|^{2}$ for any unit vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{C}^{n}.

Proposition 1. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be any two unit vectors in \mathbb{C}^{n}. Then

$$
\begin{equation*}
\left.\left.\langle | x\right|^{2},|y|^{2}\right\rangle-|\langle x, y\rangle|^{2} \leq 1 / 2 \tag{1}
\end{equation*}
$$

where $\langle x, y\rangle:=\sum_{k=1}^{n} x_{k} \overline{y_{k}}$ is the canonical inner product of x and y, with \bar{z} denoting the complex conjugate of z, and $|z|^{2}:=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right)$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$. The upper bound $1 / 2$ on $\left.\left.\langle | x\right|^{2},|y|^{2}\right\rangle-|\langle x, y\rangle|^{2}$ in (1) is exact, as it is attained if, e.g., $n \geq 2, x=\frac{1}{\sqrt{2}}(1,1,0, \ldots, 0)$, and $y=\frac{1}{\sqrt{2}}(1,-1,0, \ldots, 0)$.

Inequality (1) may be viewed as providing a lower bound on $|\langle x, y\rangle|$. As such, it may remind one of a reverse to the Cauchy-Schwarz inequality $|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle$ for any x and y in \mathbb{C}^{n}; see, e.g., [1, 2] and many references therein. One may also note here that the lower bound on the modulus $|\langle x, y\rangle|$ of the inner product $\langle x, y\rangle$ of vectors x and y in \mathbb{C}^{n} is provided by (1) in terms of the inner product $\left.\left.\langle | x\right|^{2},|y|^{2}\right\rangle$ of vectors $|x|^{2}$ and $|y|^{2}$ in \mathbb{R}^{n}.
Proof of Proposition 1. The last assertion in Proposition 1 is obvious.
As for inequality (1), it can be obtained using Lagrange multipliers [3], at least for x and y in \mathbb{R}^{n}. However, analyzing a "thoughtless" Lagrange multiplier solution, one may find a more elegant, "clever" solution. At least, this happened here.

First, suppose that x and y are in \mathbb{R}^{n}. Then the problem is to show that

$$
\begin{equation*}
\sum x_{k}^{2} y_{k}^{2} \leq 1 / 2+\left(\sum x_{k} y_{k}\right)^{2} \tag{2}
\end{equation*}
$$

given that $\sum x_{k}^{2}=1$ and $\sum y_{k}^{2}=1$.
Let

$$
s_{+}:=\sum_{k: x_{k} y_{k}>0} x_{k} y_{k}, \quad s_{-}:=-\sum_{k: x_{k} y_{k}<0} x_{k} y_{k}
$$

Then $s_{+}-s_{-}=\sum x_{k} y_{k}$ and $s_{+}+s_{-}=\sum\left|x_{k} y_{k}\right| \leq \sqrt{\sum x_{k}^{2}} \sqrt{\sum y_{k}^{2}}=1$, by the Cauchy-Schwarz inequality. Also, $\sum x_{k}^{2} y_{k}^{2} \leq s_{+}^{2}+s_{-}^{2}$. So, (2) reduces to $s_{+}^{2}+s_{-}^{2} \leq$ $1 / 2+\left(s_{+}-s_{-}\right)^{2}$, which simplifies to $s_{+} s_{-} \leq 1 / 4$, and the latter inequality holds because $s_{ \pm} \geq 0$ and $s_{+}+s_{-} \leq 1$. Thus, (2) is proved.

Consider now the general case, with any unit vectors x and y in \mathbb{C}^{n}. Replacing $\overline{y_{k}}$ by y_{k} and noting that $\left|\overline{y_{k}}\right|=\left|y_{k}\right|$, we see that the remaining problem is to show that

$$
|s|^{2}-\sum_{k=1}^{n}\left|x_{k}\right|^{2}\left|y_{k}\right|^{2} \geq-1 / 2
$$

where

$$
s:=\sum_{k=1}^{n} v_{k} \quad \text { and } \quad v_{k}:=x_{k} y_{k} .
$$

For any fixed values of the $\left|x_{j}\right|$'s and $\left|y_{k}\right|$'s (so that values of the $\left|v_{k}\right|$'s are also fixed), minimize $|s|^{2}$. Let $\left(\left(x_{j}\right),\left(y_{k}\right)\right)$ be a corresponding minimizer, which exists by compactness and continuity. Suppose first that the minimum value of $|s|^{2}$ is nonzero, so that $s \neq 0$. By the triangle inequality for complex numbers s and v_{1}, we have $|s| \geq\left|\left|v_{1}\right|-\left|s-v_{1}\right|\right|$, with the equality iff v_{1} is a real multiple of s. So,

$$
|s|^{2} \geq\left(\left|v_{1}\right|-\left|s-v_{1}\right|\right)^{2}=\left(\left|v_{1}\right|-\left|v_{2}+\cdots+v_{n}\right|\right)^{2}
$$

with the equality (in place of the just displayed inequality) iff v_{1} is a real multiple of s. Fixing now the vectors v_{2}, \ldots, v_{n}, we see that, for any minimizing $\left(\left(x_{j}\right),\left(y_{k}\right)\right)$, the vector v_{1} must be a real multiple of s. Similarly, all the v_{j} 's must be real multiples of s.

Therefore, if $s \neq 0$, then all the vectors $v_{k}=x_{k} y_{k}$ are real multiples of s, and the problem reduces to the already considered case when the x_{j} 's and y_{k} 's are real numbers.

The yet remaining problem, corresponding to the case $s=0$, is this: show that

$$
\sum_{k=1}^{n}\left|x_{k}\right|^{2}\left|y_{k}\right|^{2} \leq 1 / 2
$$

for unit vectors x and y in \mathbb{C}^{n} with $\sum_{k=1}^{n} x_{k} y_{k}=0$.
The condition $\sum_{k=1}^{n} x_{k} y_{k}=0$ obviously implies $\left|x_{j} y_{j}\right| \leq \sum_{k \in[n] \backslash\{j\}}\left|x_{k} y_{k}\right|-$ or, equivalently, $2\left|x_{j} y_{j}\right| \leq \sum_{k \in[n]}\left|x_{k} y_{k}\right|-$ for all $j \in[n]:=\{1, \ldots, n\}$.

Letting now $a_{j}:=\left|x_{j}\right|$ and $b_{j}:=\left|y_{j}\right|$, we see that the problem reduces to proving the following.
Claim. If $a_{j} \geq 0, b_{j} \geq 0$, and $2 a_{j} b_{j} \leq \sum_{i \in[n]} a_{i} b_{i}$ for all $j \in[n]$, and if $\sum_{j \in[n]} a_{j}^{2}=$ $1=\sum_{j \in[n]} b_{j}^{2}$, then $\sum_{j \in[n]} a_{j}^{2} b_{j}^{2} \leq 1 / 2$.

The proof of this claim is easy. Indeed, by the Cauchy-Schwarz inequality, $\sum_{i \in[n]} a_{i} b_{i} \leq 1$. So, for all $j \in[n]$ we have $2 a_{j} b_{j} \leq \sum_{i \in[n]} a_{i} b_{i} \leq 1$ and hence $a_{j} b_{j} \leq 1 / 2$ and $\sum_{j \in[n]} a_{j}^{2} b_{j}^{2} \leq \sum_{j \in[n]} a_{j} b_{j} / 2 \leq 1 / 2$.

This completes the proof of the claim and thus the entire proof of Proposition 1

REFERENCES

1. Dragomir, S. S. (2015). Reverses of Schwarz inequality in inner product spaces with applications. Math. Nachr. 288(7): 730-742. URLhttps://doi.org/10.1002/mana. 201300100
2. Otachel, Z. (2018). Reverse Schwarz inequalities and some consequences in inner product spaces. J. Math. Anal. Appl. 458(2): 1409-1426. URL https://doi.org/10.1016/j.jmaa.2017.10.038
3. Pourciau, B. H. (1980). Modern multiplier rules. Amer. Math. Monthly 87(6): 433-452. URL http:// dx.doi.org/10.2307/2320250
