

Michigan Technological University

From the SelectedWorks of Iosif Pinelis

Winter 2023

An exact bound for the inner product of vectors in C^n

Iosif Pinelis, Michigan Technological University

An exact bound for the inner product of vectors in \mathbb{C}^n

Iosif Pinelis

Abstract. It is shown that 1/2 is the exact upper bound on the difference $\sum_{k=1}^{n} |x_k|^2 |y_k|^2$ $\left|\sum_{k=1}^n x_k y_k\right|^2$ for any unit vectors $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$ in \mathbb{C}^n .

Proposition 1. Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ be any two unit vectors in \mathbb{C}^n . Then

$$\langle |x|^2, |y|^2 \rangle - |\langle x, y \rangle|^2 \le 1/2, \tag{1}$$

where $\langle x,y \rangle := \sum_{k=1}^n x_k \overline{y_k}$ is the canonical inner product of x and y, with \overline{z} denoting the complex conjugate of z, and $|z|^2 := (|z_1|^2, \dots, |z_n|^2)$ for $z = (z_1, \dots, z_n) \in \mathbb{C}^n$. The upper bound 1/2 on $\langle |x|^2, |y|^2 \rangle - |\langle x,y \rangle|^2$ in (1) is exact, as it is attained if, e.g., $n \geq 2$, $x = \frac{1}{\sqrt{2}}(1,1,0,\dots,0)$, and $y = \frac{1}{\sqrt{2}}(1,-1,0,\dots,0)$.

Inequality (1) may be viewed as providing a lower bound on $|\langle x, y \rangle|$. As such, it may remind one of a reverse to the Cauchy–Schwarz inequality $|\langle x,y\rangle|^2 \leq \langle x,x\rangle\langle y,y\rangle$ for any x and y in \mathbb{C}^n ; see, e.g., [1, 2] and many references therein. One may also note here that the lower bound on the modulus $|\langle x,y\rangle|$ of the inner product $\langle x,y\rangle$ of vectors x and y in \mathbb{C}^n is provided by (1) in terms of the inner product $\langle |x|^2, |y|^2 \rangle$ of vectors $|x|^2$ and $|y|^2$ in \mathbb{R}^n .

Proof of Proposition 1. The last assertion in Proposition 1 is obvious.

As for inequality (1), it can be obtained using Lagrange multipliers [3], at least for x and y in \mathbb{R}^n . However, analyzing a "thoughtless" Lagrange multiplier solution, one may find a more elegant, "clever" solution. At least, this happened here.

First, suppose that x and y are in \mathbb{R}^n . Then the problem is to show that

$$\sum x_k^2 y_k^2 \le 1/2 + \left(\sum x_k y_k\right)^2 \tag{2}$$

given that $\sum x_k^2 = 1$ and $\sum y_k^2 = 1$.

$$s_+ := \sum_{k \colon x_k y_k > 0} x_k y_k, \quad s_- := -\sum_{k \colon x_k y_k < 0} x_k y_k.$$

Then $s_+ - s_- = \sum x_k y_k$ and $s_+ + s_- = \sum |x_k y_k| \le \sqrt{\sum x_k^2} \sqrt{\sum y_k^2} = 1$, by the Cauchy–Schwarz inequality. Also, $\sum x_k^2 y_k^2 \le s_+^2 + s_-^2$. So, (2) reduces to $s_+^2 + s_-^2 \le s_+^2 +$ $1/2 + (s_+ - s_-)^2$, which simplifies to $s_+ s_- \le 1/4$, and the latter inequality holds because $s_{\pm} \geq 0$ and $s_{+} + s_{-} \leq 1$. Thus, (2) is proved.

Consider now the general case, with any unit vectors x and y in \mathbb{C}^n . Replacing $\overline{y_k}$ by y_k and noting that $|\overline{y_k}| = |y_k|$, we see that the remaining problem is to show that

$$|s|^2 - \sum_{k=1}^n |x_k|^2 |y_k|^2 \ge -1/2,$$

revised2.tex

where

$$s := \sum_{k=1}^n v_k \quad \text{and} \quad v_k := x_k y_k.$$

For any fixed values of the $|x_j|$'s and $|y_k|$'s (so that values of the $|v_k|$'s are also fixed), minimize $|s|^2$. Let $((x_i), (y_k))$ be a corresponding minimizer, which exists by compactness and continuity. Suppose first that the minimum value of $|s|^2$ is nonzero, so that $s \neq 0$. By the triangle inequality for complex numbers s and v_1 , we have $|s| \ge ||v_1| - |s - v_1||$, with the equality iff v_1 is a real multiple of s. So,

$$|s|^2 \ge (|v_1| - |s - v_1|)^2 = (|v_1| - |v_2 + \dots + v_n|)^2,$$

with the equality (in place of the just displayed inequality) iff v_1 is a real multiple of s. Fixing now the vectors v_2, \ldots, v_n , we see that, for any minimizing $((x_i), (y_k))$, the vector v_1 must be a real multiple of s. Similarly, all the v_i 's must be real multiples of

Therefore, if $s \neq 0$, then all the vectors $v_k = x_k y_k$ are real multiples of s, and the problem reduces to the already considered case when the x_j 's and y_k 's are real

The yet remaining problem, corresponding to the case s=0, is this: show that

$$\sum_{k=1}^{n} |x_k|^2 |y_k|^2 \le 1/2$$

for unit vectors x and y in \mathbb{C}^n with $\sum_{k=1}^n x_k y_k = 0$. The condition $\sum_{k=1}^n x_k y_k = 0$ obviously implies $|x_j y_j| \leq \sum_{k \in [n] \setminus \{j\}} |x_k y_k|$ – or, equivalently, $2|x_jy_j| \leq \sum_{k \in [n]} |x_ky_k|$ – for all $j \in [n] := \{1, \dots, n\}$.

Letting now $a_i := |x_i|$ and $b_i := |y_i|$, we see that the problem reduces to proving the following.

Claim. If
$$a_j \geq 0$$
, $b_j \geq 0$, and $2a_jb_j \leq \sum_{i \in [n]} a_ib_i$ for all $j \in [n]$, and if $\sum_{j \in [n]} a_j^2 = 1 = \sum_{j \in [n]} b_j^2$, then $\sum_{j \in [n]} a_j^2b_j^2 \leq 1/2$.

The proof of this claim is easy. Indeed, by the Cauchy-Schwarz inequality, $\begin{array}{l} \sum_{i\in[n]}a_ib_i\leq 1. \text{ So, for all } j\in[n] \text{ we have } 2a_jb_j\leq \sum_{i\in[n]}a_ib_i\leq 1 \text{ and hence } \\ a_jb_j\leq 1/2 \text{ and } \sum_{j\in[n]}a_j^2b_j^2\leq \sum_{j\in[n]}a_jb_j/2\leq 1/2. \end{array}$ This completes the proof of the claim and thus the entire proof of Proposition 1. \blacksquare

REFERENCES

- Dragomir, S. S. (2015). Reverses of Schwarz inequality in inner product spaces with applications. *Math.* Nachr. 288(7): 730-742. URL https://doi.org/10.1002/mana.201300100.
- Otachel, Z. (2018). Reverse Schwarz inequalities and some consequences in inner product spaces. J. Math. Anal. Appl. 458(2): 1409-1426. URL https://doi.org/10.1016/j.jmaa.2017.10.038.
- Pourciau, B. H. (1980). Modern multiplier rules. Amer. Math. Monthly 87(6): 433-452. URL http:// dx.doi.org/10.2307/2320250.

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931 ipinelis@mtu.edu