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IDENTITIES AND INEQUALITIES FOR THE COSINE AND SINE
FUNCTIONS

IOSIF PINELIS

ABSTRACT. Identities and inequalities for the cosine and sine functions are obtained.

1. STATEMENTS AND DISCUSSION

The basic result of this note is

Theorem 1.1. For any real x

(1.1) cosπx =
∞

∑
j=1

t jπ
2 j(1/4− x2) j,

where

(1.2) t j :=
∞

∑
k=0

a j,k, a j,k :=
(−π2/4)k

(2 j+2k)!

(
j+ k

j

)
.

Moreover, one has the recurrence

t j =
2(2 j−3)

π2 j
t j−1−

1
π2 j( j−1)

t j−2 for j = 2,3, . . . ,(1.3)

with t0 = 0 and t1 = 1/π .
Furthermore, for all natural j

(1.4) 0 < t j <
1

(2 j)!
,

and

t j ∼
1

(2 j)!
as j→ ∞.
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The necessary proofs will be given in Section 2.
Recurrence (1.3) allows one to compute the coefficients t j in (1.1) quickly and effi-

ciently. In particular, we see that

(t1, . . . , t5) =
(

1
π
,

1
π3 ,

12−π2

6π5 ,
10−π2

2π7 ,
1680−180π2 +π4

120π9

)
≈
(
0.318,0.0323,1.16×10−3,2.16×10−5,2.46×10−7).

On the other hand, inequalities (1.4) together with identity (1.1) will serve as the
source of other inequalities, which begin with the following:

Corollary 1.2. For each natural m, consider the polynomial

(1.5) Pm(x) :=
m

∑
j=1

t jπ
2 j(1/4− x2) j,

which is the mth partial sum of the series in (1.1). Then for all x ∈ (−1/2,1/2)

(1.6) Pm(x)< Pm+1(x)< cosπx

and

(1.7)
0 < δm(x) := cosπx−Pm(x)<

π2m+2(1/4− x2)m+1

(2m+2)!
1

1−qm

∼
m→∞

δ
∗
m(x) :=

π2m+2(1/4− x2)m+1

(2m+2)!
,

where

qm :=
π2/4

(2m+4)(2m+3)

and the asymptotic relation holds uniformly in x ∈ (− 1
2 ,

1
2 ).

Remark 1.3. Note that the function δm is analytic. So, in view of [3, Proposition I]
(proved e.g. in [1, page 29]), it follows from (1.7) that, for each natural m, Pm(x) is
the Hermite interpolating polynomial (HIP) (of degree 2m) determined by the 2m+ 2
conditions δ

( j)
m (± 1

2 ) = 0 for j = 0, . . . ,m; in fact, by Pólya’s theorem [3, Theorem I],
the polynomial Pm(x) is already determined by any 2m+1 of the just mentioned 2m+2
conditions.

Explicit expressions of the general HIP were given, in particular, in [2, 4]. It is
unclear, though, how to use those results to show that the polynomial Pm(x), as defined
in (1.5), is the HIP; nor is it seen how to derive monotonicity property (1.6) or the bound
in (1.7) from the mentioned expressions. �

One also has
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Proposition 1.4. For all natural j

(1.8) t j =
π1− j

2 j!
J j−1/2(π/2),

where

(1.9) Jν(z) :=
∞

∑
k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k+1)

is an expression defining the Bessel function (of the first kind) – as e.g. is done in [5,
page 359].

In view of the identity sinπx = cosπ(x− 1/2), one immediately obtains the corre-
sponding results for sinπx instead of cosπx. More specifically, we have

Corollary 1.5. Take any real x. Then

(1.10) sinπx =
∞

∑
j=1

t jπ
2 j(x(1− x)) j.

Also, for all natural m and all x ∈ (0,1)

(1.11) Qm(x)< Qm+1(x)< sinπx

and

(1.12)
0 < sinπx−Qm(x)<

π2m+2(x(1− x))m+1

(2m+2)!
1

1−qm

∼
m→∞

π2m+2(x(1− x))m+1

(2m+2)!
,

where

(1.13) Qm(x) := Pm(x−1/2) =
m

∑
j=1

t jπ
2 j(x(1− x)) j.

Remark 1.6. One may compare expansion (1.10) with the Maclaurin expansion

(1.14) sinπx =−
∞

∑
j=1

(−πx)2 j−1

(2 j−1)!
.

For any natural m, the approximation of sinπx by the corresponding Maclaurin polyno-
mial

Sm(x) :=−
m

∑
j=1

(−πx)2 j−1

(2 j−1)!

is exact to order 2m at x = 0, but it is not exact to any order at x = 1. In contrast, in view
of (1.11), the approximation of sinπx by Qm(x) is exact to order m at both x = 0 and
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x = 1. Also, in view of (1.11), the approximation of sinπx by Qm(x) is monotonic in m,
whereas the approximation of sinπx by Sm(x) is alternating:

S2 j(x)< S2 j+2(x)< sinπx < S2 j−1(x)< S2 j+1(x)

for all natural j and all real x > 0. These observations are illustrated in Fig. 1.
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FIGURE 1. Left panel: Graphs {(x,sinπx) : x ∈ [0,1]} (thick) and
{(x,Qm(x)) : x ∈ [0,1]} (thin) for m = 1,2,3,4. Right panel: Graphs
{(x,sinπx) : x ∈ [0,1]} (thick) and {(x,Sm(x)) : x ∈ [0,1]} (thin) for
m = 1,2,3,4.

We see that Q3(x) and Q4(x) are visually indistinguishable from sinπx for x ∈ [0,1];
in contrast, S1(x),S2(x),S3(x),S4(x) are all visually distinguishable from sinπx for x ∈
[0,1]. �

Remark 1.7. Inequalities (1.6) and (1.11) can of course be used to prove other inequal-
ities, which may have exactness or near-exactness properties. For example, we can
quickly prove that

f (x) :=
4
9
+15x2−8x+

4
(
2sin2(πx)+ sin2(2πx)

)
π2 > 0

for x∈ [0,1/2]. Indeed, by (1.11), we have f > f4 on [0,1/2], where f4 is the polynomial
function obtained from f by replacing the function u 7→ sinπu in the above expression
for f by the polynomial function Q4. The positivity of any polynomial on any interval
can be verified purely algorithmically, which in this case gives f4 > 0 on (0,1/2], and
hence f > 0 on [0,1/2]. The graphs of the functions f and f − f4 are shown in Fig. 2.

�

2. PROOFS

Proof of Theorem 1.1. Take any real x and let

(2.1) y := 1/4− x2,
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FIGURE 2. Graphs of of the functions f (left panel) and f − f4 (right panel).

so that y6 1/4 and

cosπx = f (y) := cos
(

π

2

√
1−4y

)
=

∞

∑
n=0

(−1)n

(2n)!

(
π

2

√
1−4y

)2n

=
∞

∑
n=0

(−1)n

(2n)!

(
π2

4

)n
(1−4y)n

=
∞

∑
n=0

(−1)n

(2n)!

(
π2

4

)n n

∑
j=0

(
n
j

)
(−4y) j

=
∞

∑
j=0

(−4y) j
∞

∑
n= j

(−1)n

(2n)!

(
π2

4

)n
(

n
j

)
(2.2)

=
∞

∑
j=0

(π2y) j t j =
∞

∑
j=1

(π2y) j t j;(2.3)

the equality in (2.2) follows by the Fubini theorem, the first equality in (2.3) follows by
the definition of t j in (1.2), and the second equality in (2.3) follows because t0 = f (0) =
0. Thus, identity (1.1) is proved.

We have already noticed that t0 = f (0) = 0. Similarly, t1 = f ′(0)/π2 = 1/π . As for
(1.3), it is the special case, with z = π2/4, of the recurrence

Tj(z) =
2 j−3

2 jz
Tj−1(z)−

1
4 j( j−1)z

Tj−2(z) for j = 2,3, . . . ,(2.4)

where

(2.5) Tj(z) :=
∞

∑
k=0

(−z)k

(2 j+2k)!

(
j+ k

j

)
,

so that t j = Tj(π
2/4). In turn, identity (2.4) can be verified by a straightforward com-

parison of the coefficients of the powers of z on both sides of the identity.
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Next, by (1.2), for j = 1,2, . . . and k = 0,1, . . . the ratio

a j,k+1

−a j,k
=

π2

8(k+1)(2 j+2k+1)

is positive and less than 1, and this ratio tends to 0 uniformly in k = 0,1, . . . as j→ ∞.
Therefore, 0 < t j < a j,0 = 1

(2 j)! for all j = 1,2, . . . , and t j ∼ a j,0 = 1
(2 j)! as j → ∞.

which verifies the last sentence of Theorem 1.1. �

Proof of Corollary 1.2. The inequalities in (1.6) follow immediately from (1.5), (1.1),
and the first inequality in (1.4).

Recalling the definition of δm(x) in (1.7), identity (1.1), the definition (2.1) of y, and
the second inequality in (1.4), we see that

δm(x) =
∞

∑
j=m+1

t jπ
2 jy j <

∞

∑
j=m+1

b j(y)

for all x ∈ (−1/2,1/2), where

b j(y) :=
(π2y) j

(2 j)!
.

Moreover, for any natural m, any natural j > m+1, and any y ∈ (0,1/4],

b j+1(y)
b j(y)

=
π2y

(2 j+2)(2 j+1)
6

π2/4
(2m+4)(2m+3)

= qm < 1,

and qm → 0 as m→ ∞. Thus, we have verified (1.7), which completes the proof of
Corollary 1.2. �

Proof of Proposition 1.4. Identity (1.8) is a special case, with z = π2/4, of the identity

(2.6) Tj(z) =
√

π

j!2 j+1/2 z1/4− j/2 J j−1/2(
√

z)

for real z > 0, with Tj(z) as defined in (2.5). In turn, to verify identity (2.6), it is enough
to compare the coefficients of the corresponding powers of z in both sides of (2.6), which
is done with the help of the identity

Γ(n+1/2) =
√

π (2n)!
4nn!

for n = 0,1, . . . , which in turn is easy to check by induction. �
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