Michigan Technological University

From the SelectedWorks of Iosif Pinelis

Summer July 30, 2019

cos, sin-ineqs.pdf

Iosif Pinelis, Michigan Technological University

Available at: https://works.bepress.com/iosif-pinelis/16/

IDENTITIES AND INEQUALITIES FOR THE COSINE AND SINE FUNCTIONS

IOSIF PINELIS

ABSTRACT. Identities and inequalities for the cosine and sine functions are obtained.

1. STATEMENTS AND DISCUSSION

The basic result of this note is

Theorem 1.1. For any real x

(1.1)
$$\cos \pi x = \sum_{j=1}^{\infty} t_j \pi^{2j} (1/4 - x^2)^j,$$

where

(1.2)
$$t_j := \sum_{k=0}^{\infty} a_{j,k}, \quad a_{j,k} := \frac{(-\pi^2/4)^k}{(2j+2k)!} \binom{j+k}{j}.$$

Moreover, one has the recurrence

(1.3)
$$t_j = \frac{2(2j-3)}{\pi^2 j} t_{j-1} - \frac{1}{\pi^2 j(j-1)} t_{j-2} \quad for \ j = 2, 3, \dots,$$

with $t_0 = 0$ *and* $t_1 = 1/\pi$.

Furthermore, for all natural j

(1.4)
$$0 < t_j < \frac{1}{(2j)!},$$

and

$$t_j \sim \frac{1}{(2j)!}$$
 as $j \to \infty$.

Date: 07.10.2018.

¹⁹⁹¹ Mathematics Subject Classification. 26D05, 26D15, 40A25, 41A58.

Key words and phrases. Inequalities; trigonometric function; cosine function; sine function; Bessel function; series expansions; approximations .

The necessary proofs will be given in Section 2.

Recurrence (1.3) allows one to compute the coefficients t_j in (1.1) quickly and efficiently. In particular, we see that

$$(t_1,\ldots,t_5) = \left(\frac{1}{\pi}, \frac{1}{\pi^3}, \frac{12-\pi^2}{6\pi^5}, \frac{10-\pi^2}{2\pi^7}, \frac{1680-180\pi^2+\pi^4}{120\pi^9}\right)$$

\$\approx (0.318, 0.0323, 1.16 \times 10^{-3}, 2.16 \times 10^{-5}, 2.46 \times 10^{-7}).

On the other hand, inequalities (1.4) together with identity (1.1) will serve as the source of other inequalities, which begin with the following:

Corollary 1.2. For each natural m, consider the polynomial

(1.5)
$$P_m(x) := \sum_{j=1}^m t_j \pi^{2j} (1/4 - x^2)^j,$$

which is the mth partial sum of the series in (1.1). Then for all $x \in (-1/2, 1/2)$

(1.6)
$$P_m(x) < P_{m+1}(x) < \cos \pi x$$

and

(1.7)
$$0 < \delta_m(x) := \cos \pi x - P_m(x) < \frac{\pi^{2m+2}(1/4 - x^2)^{m+1}}{(2m+2)!} \frac{1}{1 - q_m} \\ \underset{m \to \infty}{\sim} \delta_m^*(x) := \frac{\pi^{2m+2}(1/4 - x^2)^{m+1}}{(2m+2)!}.$$

where

$$q_m := \frac{\pi^2/4}{(2m+4)(2m+3)}$$

and the asymptotic relation holds uniformly in $x \in (-\frac{1}{2}, \frac{1}{2})$.

Remark 1.3. Note that the function δ_m is analytic. So, in view of [3, Proposition I] (proved e.g. in [1, page 29]), it follows from (1.7) that, for each natural m, $P_m(x)$ is the Hermite interpolating polynomial (HIP) (of degree 2m) determined by the 2m + 2 conditions $\delta_m^{(j)}(\pm \frac{1}{2}) = 0$ for j = 0, ..., m; in fact, by Pólya's theorem [3, Theorem I], the polynomial $P_m(x)$ is already determined by any 2m + 1 of the just mentioned 2m + 2 conditions.

Explicit expressions of the general HIP were given, in particular, in [2, 4]. It is unclear, though, how to use those results to show that the polynomial $P_m(x)$, as defined in (1.5), is the HIP; nor is it seen how to derive monotonicity property (1.6) or the bound in (1.7) from the mentioned expressions.

One also has

Proposition 1.4. For all natural j

(1.8)
$$t_j = \frac{\pi^{1-j}}{2j!} J_{j-1/2}(\pi/2),$$

where

(1.9)
$$J_{\nu}(z) := \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

is an expression defining the Bessel function (of the first kind) – as e.g. is done in [5, page 359].

In view of the identity $\sin \pi x = \cos \pi (x - 1/2)$, one immediately obtains the corresponding results for $\sin \pi x$ instead of $\cos \pi x$. More specifically, we have

Corollary 1.5. Take any real x. Then

(1.10)
$$\sin \pi x = \sum_{j=1}^{\infty} t_j \pi^{2j} (x(1-x))^j.$$

Also, for all natural *m* and all $x \in (0, 1)$

(1.11)
$$Q_m(x) < Q_{m+1}(x) < \sin \pi x$$

and

(1.12)
$$0 < \sin \pi x - Q_m(x) < \frac{\pi^{2m+2}(x(1-x))^{m+1}}{(2m+2)!} \frac{1}{1-q_m} \\ \underset{m \to \infty}{\sim} \frac{\pi^{2m+2}(x(1-x))^{m+1}}{(2m+2)!},$$

where

(1.13)
$$Q_m(x) := P_m(x-1/2) = \sum_{j=1}^m t_j \pi^{2j} (x(1-x))^j.$$

Remark 1.6. One may compare expansion (1.10) with the Maclaurin expansion

(1.14)
$$\sin \pi x = -\sum_{j=1}^{\infty} \frac{(-\pi x)^{2j-1}}{(2j-1)!}.$$

For any natural *m*, the approximation of $\sin \pi x$ by the corresponding Maclaurin polynomial

$$S_m(x) := -\sum_{j=1}^m \frac{(-\pi x)^{2j-1}}{(2j-1)!}$$

is exact to order 2m at x = 0, but it is not exact to any order at x = 1. In contrast, in view of (1.11), the approximation of $\sin \pi x$ by $Q_m(x)$ is exact to order *m* at both x = 0 and

x = 1. Also, in view of (1.11), the approximation of $\sin \pi x$ by $Q_m(x)$ is monotonic in *m*, whereas the approximation of $\sin \pi x$ by $S_m(x)$ is alternating:

$$S_{2j}(x) < S_{2j+2}(x) < \sin \pi x < S_{2j-1}(x) < S_{2j+1}(x)$$

for all natural *j* and all real x > 0. These observations are illustrated in Fig. 1.

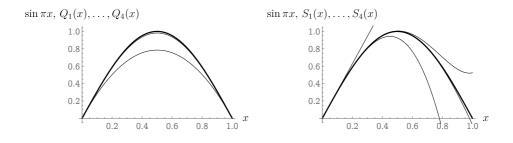


FIGURE 1. Left panel: Graphs $\{(x, \sin \pi x) : x \in [0, 1]\}$ (thick) and $\{(x, Q_m(x)) : x \in [0, 1]\}$ (thin) for m = 1, 2, 3, 4. Right panel: Graphs $\{(x, \sin \pi x) : x \in [0, 1]\}$ (thick) and $\{(x, S_m(x)) : x \in [0, 1]\}$ (thin) for m = 1, 2, 3, 4.

We see that $Q_3(x)$ and $Q_4(x)$ are visually indistinguishable from $\sin \pi x$ for $x \in [0, 1]$; in contrast, $S_1(x), S_2(x), S_3(x), S_4(x)$ are all visually distinguishable from $\sin \pi x$ for $x \in [0, 1]$.

Remark 1.7. Inequalities (1.6) and (1.11) can of course be used to prove other inequalities, which may have exactness or near-exactness properties. For example, we can quickly prove that

$$f(x) := \frac{4}{9} + 15x^2 - 8x + \frac{4\left(2\sin^2(\pi x) + \sin^2(2\pi x)\right)}{\pi^2} > 0$$

for $x \in [0, 1/2]$. Indeed, by (1.11), we have $f \ge f_4$ on [0, 1/2], where f_4 is the polynomial function obtained from f by replacing the function $u \mapsto \sin \pi u$ in the above expression for f by the polynomial function Q_4 . The positivity of any polynomial on any interval can be verified purely algorithmically, which in this case gives $f_4 > 0$ on (0, 1/2], and hence f > 0 on [0, 1/2]. The graphs of the functions f and $f - f_4$ are shown in Fig. 2.

2. Proofs

Proof of Theorem 1.1. Take any real *x* and let

(2.1)
$$y := 1/4 - x^2$$
,

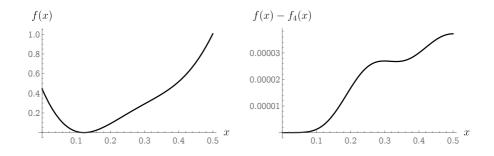


FIGURE 2. Graphs of of the functions f (left panel) and $f - f_4$ (right panel).

so that $y \leq 1/4$ and

the equality in (2.2) follows by the Fubini theorem, the first equality in (2.3) follows by the definition of t_j in (1.2), and the second equality in (2.3) follows because $t_0 = f(0) = 0$. Thus, identity (1.1) is proved.

We have already noticed that $t_0 = f(0) = 0$. Similarly, $t_1 = f'(0)/\pi^2 = 1/\pi$. As for (1.3), it is the special case, with $z = \pi^2/4$, of the recurrence

(2.4)
$$T_j(z) = \frac{2j-3}{2jz} T_{j-1}(z) - \frac{1}{4j(j-1)z} T_{j-2}(z) \text{ for } j = 2, 3, \dots,$$

where

(2.5)
$$T_j(z) := \sum_{k=0}^{\infty} \frac{(-z)^k}{(2j+2k)!} \binom{j+k}{j},$$

so that $t_j = T_j(\pi^2/4)$. In turn, identity (2.4) can be verified by a straightforward comparison of the coefficients of the powers of z on both sides of the identity.

Next, by (1.2), for j = 1, 2, ... and k = 0, 1, ... the ratio

$$\frac{a_{j,k+1}}{-a_{j,k}} = \frac{\pi^2}{8(k+1)(2j+2k+1)}$$

is positive and less than 1, and this ratio tends to 0 uniformly in k = 0, 1, ... as $j \to \infty$. Therefore, $0 < t_j < a_{j,0} = \frac{1}{(2j)!}$ for all j = 1, 2, ..., and $t_j \sim a_{j,0} = \frac{1}{(2j)!}$ as $j \to \infty$. which verifies the last sentence of Theorem 1.1.

Proof of Corollary 1.2. The inequalities in (1.6) follow immediately from (1.5), (1.1), and the first inequality in (1.4).

Recalling the definition of $\delta_m(x)$ in (1.7), identity (1.1), the definition (2.1) of y, and the second inequality in (1.4), we see that

$$\delta_m(x) = \sum_{j=m+1}^{\infty} t_j \pi^{2j} y^j < \sum_{j=m+1}^{\infty} b_j(y)$$

for all $x \in (-1/2, 1/2)$, where

$$b_j(y) := \frac{(\pi^2 y)^j}{(2j)!}.$$

Moreover, for any natural *m*, any natural $j \ge m + 1$, and any $y \in (0, 1/4]$,

$$\frac{b_{j+1}(y)}{b_j(y)} = \frac{\pi^2 y}{(2j+2)(2j+1)} \leqslant \frac{\pi^2/4}{(2m+4)(2m+3)} = q_m < 1.$$

and $q_m \to 0$ as $m \to \infty$. Thus, we have verified (1.7), which completes the proof of Corollary 1.2.

Proof of Proposition 1.4. Identity (1.8) is a special case, with $z = \pi^2/4$, of the identity

(2.6)
$$T_j(z) = \frac{\sqrt{\pi}}{j! 2^{j+1/2}} z^{1/4-j/2} J_{j-1/2}(\sqrt{z})$$

for real z > 0, with $T_j(z)$ as defined in (2.5). In turn, to verify identity (2.6), it is enough to compare the coefficients of the corresponding powers of z in both sides of (2.6), which is done with the help of the identity

$$\Gamma(n+1/2) = \frac{\sqrt{\pi} (2n)!}{4^n n!}$$

for n = 0, 1, ..., which in turn is easy to check by induction.

REFERENCES

- P. J. Davis. Interpolation and approximation. Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1963.
- [2] T. N. E. Greville. A generalization of Waring's formula. Ann. Math. Statistics, 15:218–219, 1944.
- [3] S. Karlin and J. M. Karon. On Hermite-Birkhoff interpolation. J. Approximation Theory, 6:90–115, 1972. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970).
- [4] A. Spitzbart. A generalization of Hermite's interpolation formula. Amer. Math. Monthly, 67:42–46, 1960.
- [5] E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition.

IOSIF PINELIS, DEPARTMENT OF MATHEMATICAL SCIENCES, MICHIGAN TECHNOLOGICAL UNIVER-SITY, HOUGHTON, MICHIGAN 49931, USA