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EXCESS VERSIONS OF THE MINKOWSKI AND HÖLDER

INEQUALITIES

IOSIF PINELIS

Abstract. Certain excess versions of the Minkowski and Hölder inequalities

are given. These new results generalize and improve the Minkowski and Hölder
inequalities.

1. Introduction and summary

Let p and q be positive real numbers such that 1
p + 1

q = 1; then, of course, p > 1

and q > 1. Let X and Y denote nonnegative random variables (r.v.’s), defined on
the same probability space. Then one has the Minkowski inequality

‖X + Y ‖p 6 ‖X‖p + ‖Y ‖p
and the Hölder inequality

EXY 6 ‖X‖p‖Y ‖q,
where, as usual, ‖X‖p := E1/p |X|p; see, e.g., [7]. From now on, to avoid unpleasant
trivialities, let us assume that ‖X‖p + ‖Y ‖p + ‖Y ‖q <∞.

A special case of Hölder’s inequality is Lyapunov’s inequality, which states that
EXα is log-convex in real α, with the conventions 00 := 1, 0α := ∞ for α < 0,
and 0 · ∞ := 0, so that EX0 = 1, and EXα = ∞ if α < 0 and P(X = 0) > 0. In
particular, we have ‖X‖1 6 ‖X‖p.

So, we may define the (always nonnegative) p-excess of X by the formula

Ep(X) :=
(
‖X‖pp − ‖X‖

p
1)1/p.

One may note that E2(X) is the standard deviation of the r.v. X. Introduce also
the covariance-like expression

Cp(X,Y ) := EXp−1Y − Ep−1X EY,

which is the true covariance, Cov(X,Y ), of the r.v.’s X and Y in the case p = 2.
As will be shown in this note, the following Minkowski-like and Hölder-like in-

equalities for the p-excess hold: if p 6 2 (so that 1 < p 6 2), then

(1) Ep(X + Y ) 6 Ep(X) + Ep(Y )

and

(2) Cp(X,Y ) 6 Ep(X)p−1Ep(Y ).

In the case p = 2 inequality (2) becomes the covariance inequality, that is, the
Cauchy–Schwarz inequality for the centered r.v.’s X − EX and Y − EY .
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More generally, for θ ∈ [0, 1] define the (p, θ)-excess of X by the formula

Ep,θ(X) :=
(
‖X‖pp − θp‖X‖

p
1)1/p,

which interpolates between ‖X‖p = Ep,0(X) and Ep(X) = Ep,1(X), and then also

Cp,θ(X,Y ) := EXp−1Y − θp Ep−1X EY,

which interpolates between Cov(Xp−1, Y ) = Cp,0(X,Y ) and Cp(X) = Cp,1(X,Y ).
Inequalities (1) and (2), along with the Minkowski and Hölder inequalities, can

be extended as follows:

Theorem 1. Suppose that p 6 2 (so that 1 < p 6 2). Then for all θ ∈ [0, 1]

(3) Ep,θ(X + Y ) 6 Ep,θ(X) + Ep,θ(Y )

and

(4) Cp,θ(X,Y ) 6 Ep,θ(X)p−1Ep,θ(Y ).

For any real p > 2 and any θ ∈ (0, 1], inequalities (3) and (4) do not hold in
general.

Obviously, the Minkowski and Hölder inequalities are the special cases of in-
equalities (3) and (4), respectively, corresponding to θ = 0, and (1) and (2) are
the special cases of (3) and (4) corresponding to θ = 1. Moreover, considerations
in Round 1 of the proof of (4), to be given in Section 2, show that inequality (4)
is, in a sense, an improvement of Hölder’s inequality (for p ∈ (1, 2)). Similarly,
the derivation of (3) from (4) in the paragraph containing formulas (31) and (32)
shows that inequality (3) is an improvement of Minkowski’s inequality (again for
p ∈ (1, 2)).

2. Proof of Theorem 1

We shall see at the end of this section that inequalities (3) and (4) are easy to
obtain from each other, so that it is enough to prove one of them.

Proof of inequality (4). This proof is much more difficult than that of Hölder’s
inequality. It will be done by a number of rounds of reduction of the difficulty of
the problem.

Round 1: Reduction to the case θ = 1 Consider the differences

(5) ∆p,θ(X,Y ) := Cp,θ(X,Y )− Ep,θ(X)p−1Ep,θ(Y )

and

(6) ∆p(X,Y ) := ∆p,1(X,Y ) := Cp(X,Y )− Ep(X)p−1Ep(Y )

between the left and right sides of inequalities (4) and (2), respectively. For non-
negative real numbers A,B,C, consider also

(7)
∆p;A,B,C(X,Y ) =A+ EXp−1Y − Ep−1X EY

−
(
B + EXp − EpX

)1/q (
C + EY p − Ep Y

)1/p
.

The following lemma will also be used in Round 8 of this proof.

Lemma 2. Suppose that the nonnegative real numbers A,B,C are such that A 6
B1/qC1/p. Then ∆p;A,B,C(X,Y ) 6 ∆p(X,Y ).
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Proof. Since ∆p;A,B,C(X,Y ) is nondecreasing in A, without loss of generality (wlog)

A = B1/qC1/p. IfB = 0 or C = 0, thenA = 0, and so, the inequality ∆p;A,B,C(X,Y )
6 ∆p(X,Y ) is trivial. Hence, wlog B > 0 and C > 0, and then we can write
C = γpB and A = γB for some real γ > 0. Let now

(8) d(B) := ∆p;γB,B,γpB(X,Y ).

Introduce also

c :=
(
γpB + EY p − Ep Y

)1/p/(
B + EXp − EpX

)1/p
and then a := γc−1/q and b := c1/q. Then

d′(B) = γ − 1

q
c− 1

p
γp c−p/q = ab−

(ap
p

+
bq

q

)
6 0

for all B > 0, by Young’s inequality. So, ∆p;A,B,C(X,Y ) = ∆p;γB,B,γpB(X,Y ) =
d(B) 6 d(0) = ∆p:0,0,0(X,Y ) = ∆p(X,Y ). Lemma 2 is thus proved. �

Now take any θ ∈ [0, 1] and note that ∆p,θ(X,Y ) = ∆p;A,B,C(θX, θY ) with
A := (1 − θp)EXp−1Y , B := (1 − θp)EXp, and C := (1 − θp)EY p, so that, by
Hölder’s inequality, the condition A 6 B1/qC1/p of Lemma 2 holds, which yields
∆p,θ(X,Y ) 6 ∆p(θX, θY ). Thus, to prove inequality (4), it is enough to prove its
special case, inequality (2).

Round 2: Removing the case p = 2 This round is very easy. As was noted,
the case p = 2 of (2) is the Cauchy–Schwarz inequality. So, it is enough to prove
(2) for p ∈ (1, 2), which will be henceforth assumed.

Round 3: “Finitization” of the probability space Wlog the r.v.’s X and
Y take only finitely many values (one may approximate X and Y from below
by nonnegative simple r.v.’s and then use the monotone convergence theorem).
Therefore, wlog X and Y are defined on a finite probability space. For instance,
we may assume that the probability space is (I,Σ, µ), where I is the finite set
{(x, y) : P(X = x, Y = y) > 0}, Σ is the σ-algebra of all subsets of I, the probability
measure µ is defined by the condition µ({i}) = wi := P(X = x, Y = y) for all
i = (x, y) ∈ I, and the r.v.’s X and Y are defined by the conditions X(i) = x
and Y (i) = y for all i = (x, y) ∈ I. So, the r.v.’s X and Y maybe identified with
finite-dimension vectors (xi)i∈I and (yi)i∈I , respectively.

Round 4: Reduction to an extremal problem Introducing also the vector
W := (wi)i∈I , we can rewrite inequality (2) as

(9) sup
{

∆p(X,Y,W ) : (X,Y,W ) ∈ T I;m1,1,m1,p,m2,1,m2,p

} (?)

6 0,

where m1,1,m1,p,m2,1,m2,p are any (strictly) positive real numbers,

∆p(X,Y,W ) := (Xp−1Y ) ·W − (X ·W )p−1 Y ·W

−
(
Xp ·W − (X ·W )p

)1/q (
Y p ·W − (Y ·W )p

)1/p
,

the symbol · denotes the dot product in RI , and T I;m1,1,m1,p,m2,1,m2,p
is the set of

all triples (X,Y,W ) of vectors X = (xi)i∈I , Y = (yi)i∈I , and W = (wi)i∈I with
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nonnegative coordinates such that

1 ·W =
∑
i∈I

wi = 1, Xp ·W =
∑
i∈I

xpiwi = m1,p, Y p ·W =
∑
i∈I

ypi wi = m2,p,

X ·W =
∑
i∈I

xiwi = m1,1, Y ·W =
∑
i∈I

yiwi = m2,1;

here and in what follows, 1 := (1)i∈I , the vector with all coordinates equal 1. One
may note that, in view of the standard convention sup ∅ = −∞, inequality (9) is
trivial whenever m1,1,m1,p,m2,1,m2,p are such that T I;m1,1,m1,p,m2,1,m2,p

= ∅. A
reason for the numbers m1,1,m1,p,m2,1,m2,p to be assumed strictly positive is that,
if at least one of them is 0, then for any (X,Y,W ) ∈ T I;m1,1,m1,p,m2,1,m2,p at least
one of the r.v.’s X,Y is almost surely 0, which makes inequality (9) trivial.

Round 5: Compactification, by a change of variables To solve an extremal
problem such as the one stated in Round 4, it is natural to use the method of
Lagrange multipliers. To be able to do that, we need to ensure a priori that the
supremum in (9) is attained. However, this does not seem easy to do, since the set
T I;m1,1,m1,p,m2,1,m2,p

is not bounded and hence not compact in general; indeed, for
any real β > 0 and any i ∈ I such that wi = 0, one may take however large xi > 0

so that the condition xβi wi = 0 hold.
An appropriate way to compactify the set T I;m1,1,m1,p,m2,1,m2,p

is to use the
following new variables: for i ∈ I, let

(10) ui := xpiwi and vi := ypi wi,

so that

xiwi = u
1/p
i w

1/q
i , yiwi = v

1/p
i w

1/q
i , xp−1i yiwi = u

1/q
i v

1/p
i .

Then (9) will follow from

(11) sup
{

∆̃p(U, V,W ) : (U, V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p

} (?)

6 0,

where T̃ I;m1,1,m1,p,m2,1,m2,p
is the set of all triples (U, V,W ) of vectors U = (ui)i∈I ,

V = (vi)i∈I , and W = (wi)i∈I with nonnegative coordinates such that

1 ·W = 1, U · 1 = m1,p, V · 1 = m2,p,(12)

U1/p ·W 1/q = m1,1, V 1/p ·W 1/q = m2,1(13)

and, for (U, V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p
,

∆̃p(U, V,W ) :=U1/q · V 1/p − (U1/p ·W 1/q)p−1 V 1/p ·W 1/q

−
(
U · 1− (U1/p ·W 1/q)p

)1/q (
V · 1− (V 1/p ·W 1/q)p

)1/p
(14)

=U1/q · V 1/p −mp−1
1,1 m2,1 −

(
m1,p −mp

1,1

)1/q (
m2,p −mp

2,1

)1/p
.(15)

Indeed, the supremum in (9) is no greater than that in (11); at this point, we can
only say “no greater” because the (following by (10)) expressions xi = (ui/wi)

1/p

and yi = (vi/wi)
1/p of xi and yi in terms of ui, vi, wi will only be valid if wi 6= 0.

The important point here is that the set T̃ := T̃ I;m1,1,m1,p,m2,1,m2,p is compact,

and the function ∆̃p is continuous on it. So, ∆̃p attains the (global) maximum on

the set T̃ whenever T̃ 6= ∅, which will be henceforth assumed wlog.
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For any vector R = (ri)i∈I ∈ [0,∞)I , let

IR := {i ∈ I : ri > 0}.

In view of (13) and the condition (stated below (9)) that m1,1,m1,p,m2,1,m2,p are

strictly positive, for any (U, V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p we have

(16) IU ∩ IW 6= ∅ and IV ∩ IW 6= ∅.

Round 6: Further preparation for Lagrange multipliers Fix now any
triple (U∗, V ∗,W ∗) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p at which the maximum of ∆̃p is at-

tained. Then clearly the triple (U∗, V ∗,W ∗) is a maximizer of ∆̃p over the set

T̃ ∗I;m1,1,m1,p,m2,1,m2,p

:= {(U, V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p
: IU = IU∗ , IV = IV ∗ , IW = IW∗}.

Also, with the triple (U∗, V ∗,W ∗) fixed, any triple (U, V,W ) ∈ T̃ ∗I;m1,1,m1,p,m2,1,m2,p

may be identified with the triple (U |IU∗ , V |IV ∗ ,W |IW∗ ) of the restrictions of U, V,W
to the sets IU = IU∗ , IV = IV ∗ , IW = IW∗ , respectively; here, for instance, U |IU∗ =

(ui)i∈IU∗ ; so, ∆̃p(U, V,W ) may be considered a function of (U |IU∗ , V |IV ∗ ,W |IW∗ ).

Round 7: Obtaining Lagrange multiplier equations Now we are ready
to apply (say) the Carathéodory–John version of the Lagrange multiplier rule (see
e.g. [6, page 441]). In view of (15), there exist some real numbers α, λ, µ, ν, ρ, ω

(Lagrange multipliers) – with α corresponding to the minimized ∆̃p(U, V,W ), and

λ, µ, ν, ρ, ω corresponding to the restrictions in (13) and (12) on U1/p ·W 1/q, V 1/p ·
W 1/q,
U · 1, V · 1,1 ·W , respectively – such that

(17) α2 + λ2 + µ2 + ν2 + ρ2 + ω2 > 0

and the triple (U∗, V ∗,W ∗) is a solution to the following system of equations for
(U, V,W ):

∀ i ∈ IU α(p− 1)u
−1/p
i v

1/p
i = λu

−1/q
i w

1/q
i + ν,(18)

∀ i ∈ IV αu
1/q
i v

−1/q
i = µv

−1/q
i w

1/q
i + ρ,(19)

∀ i ∈ IW 0 = λu
1/p
i w

−1/p
i +µv

1/p
i w

−1/p
i + ω.(20)

Multiplying (both sides of) equations (18) and (19) by ui and vi, respectively, we
have

α(p− 1)u
1/q
i v

1/p
i =λu

1/p
i w

1/q
i +νui,(21)

αu
1/q
i v

1/p
i = µv

1/p
i w

1/q
i +ρvi(22)

for all i ∈ I.
A difficulty in analyzing these Lagrange multiplier equations is that some of the

Lagrange multipliers α, λ, µ, ν, ρ, ω may take zero values. In a certain sense, this
corresponds to the fact the difference between the left and right sides of inequality
(2) can attain its maximum (zero) value in a number of ways, including the cases
when X = Y and when Y is a constant. Also, we have to account for cases when
some of the values of ui, vi, wi are 0, that is, when i is not in the corresponding sets
IU , IV , IW .
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In particular, we have to consider the cases when ui > 0 or vi > 0 while wi = 0(
that is, when i ∈ (IU ∪ IV ) \ IW

)
. Recalling (10), we see that, in terms of the

“original, pre-compactification” variables xi, yi, wi, these cases reflect the possibility
for these variables to vary in such a way that for some i ∈ I we have wi ↓ 0 while
xi →∞ or yi →∞ and, moreover, xpiwi or, respectively, ypi wi converges to a finite
nonzero limit. This kind of phenomena may be thought of as part of the mass of
the “distribution“ of U or V running away to ∞. This brings us to the following
round.

Round 8: Analysis of Lagrange multipliers, part I: Removing “the masses
at ∞” Take any triple (U, V,W ) ∈ ([0,∞)I)3 satisfying the Lagrange multiplier
equations (18)–(20). On the set IW , define the probability space by the condition
P({i}) = wi for all i ∈ IW , and then define r.v.’s X and Y on this probability space
by the conditions

(23) X(i) = xi := (ui/wi)
1/p and Y (i) = yi := (vi/wi)

1/p for all i ∈ IW .

The r.v.’s X and Y are well defined, because wi > 0 for all i ∈ IW and
∑
i∈IW wi =∑

i∈I wi = 1. Then, by (14) and (7), ∆̃p(U, V,W ) = ∆p;A,B,C(X,Y ), where

(24) A :=
∑
i/∈IW

u
1/q
i v

1/p
i , B :=

∑
i/∈IW

ui, C :=
∑
i/∈IW

vi,

“the masses at ∞”. By Hölder’s inequality, here the condition A 6 B1/qC1/p in
Lemma 2 holds. So, ∆̃p(U, V,W ) 6 ∆p(X,Y ).

Thus, it remains to show that ∆p(X,Y ) 6 0 for X and Y as in (23), with
(U, V,W ) ∈ ([0,∞)I)3 satisfying the Lagrange multiplier equations (18)–(20).

Round 9: Analysis of Lagrange multipliers, part II: Reduction to the
case Y = X + t, t ∈ R In terms of the xi’s and yi’s as in (23), for i ∈ IW
equations (20), (21), (22) can be rewritten as

0 =λxi+µyi +ω,(25)

α(p− 1)xp−1i yi =λxi +νxpi ,(26)

αxp−1i yi = µyi +ρypi .(27)

Lemma 3. Take any pair (X,Y ) ∈ ([0,∞)IW )2 satisfying equations (25)–(27) with
µ = 0. Then ∆p(X,Y ) 6 0.

Proof. This proof consists in the consideration of a system of simple cases, keeping
in mind the condition µ = 0.

Case 1: ρ = 0.
Subcase 1.1: ρ = 0 6= α. Then, by (27), xp−1i yi = 0 for all i ∈ IW . So,
EXp−1Y = 0, and inequality ∆p(X,Y ) 6 0 obviously holds.
Subcase 1.2: ρ = 0 = α. Then, by (26), λxi + νxpi = 0 for all i ∈ IW .
Subsubcase 1.2.1: ρ = 0 = α and λ = 0 = ν. Then, by (25), ω = 0. So, we have
a contradiction with (17).
Subsubcase 1.2.2: ρ = 0 = α and λ 6= 0. Then, by (25), xi does not depend on
i ∈ IW ; that is, the r.v. X is a constant, and hence ∆p(X,Y ) = 0.
Subsubcase 1.2.2: ρ = 0 = α and λ = 0 6= ν. Then, by (26), xi = 0 for all on
i ∈ IW ; that is, X = 0, and hence ∆p(X,Y ) = 0.

Case 2: ρ 6= 0.
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Subcase 2.1: ρ 6= 0 = λ. Then, by (26) and (27), νxpi = (p− 1)ρypi for all i ∈ IW .
So, Y = cX for some real c > 0, and hence ∆p(X,Y ) = 0.
Subcase 2.2: ρ 6= 0 6= λ. Then, by (25), xi does not depend on i ∈ IW ; that is,
the r.v. X is a constant, and hence ∆p(X,Y ) = 0.

Thus, indeed in all cases we have ∆p(X,Y ) 6 0. �

So, by Lemma 3, wlog µ 6= 0. So, in view of (25), Y = kX + t for some real k
and t.

Now we need Chebyshev’s integral inequality, which states that, if f and g are
nondecreasing functions from R to R, then for any r.v. Z one has E f(Z)g(Z) >
E f(Z)E g(Z) whenever all the three expectations here are finite; see e.g. Corollary 2
on page 318 in [2] (with n = 1, φ = 1, and the probability distribution of Z to play
the role of the measure λ there). This inequality follows immediately by taking the
expectation of both sides of the obvious inequality (f(Z)−f(Z1))(g(Z)−g(Z1)) > 0,
where Z1 is an independent copy of Z.

By Chebyshev’s integral inequality and the mentioned log-convexity of EXα in
α, for Y = kX + t with k 6 0 we have EXp−1Y 6 EXp−1 EY 6 Ep−1X EY ,
which yields ∆p(X,Y ) 6 0, in view of (6). So, wlog k > 0, and then, because of
the positive homogeneity of ∆p(X,Y ) in Y , wlog Y = X + t.

Round 10: Analysis of the case Y = X+ t, t ∈ R Thus, to finish the proof
of (2), it remains to prove

Lemma 4. For all real t such that the r.v. X + t is nonnegative, we have

(28) δ(t) := ∆p(X,X + t) 6 0.

Proof. In view of (6), δ(0) = 0 = δ′(0). So, it is enough to show that the function
δ is concave or, equivalently, that the function f given by the formula

f(t) :=
(
E(X + t)p − (EX + t)p

)1/p
for t ∈ T := {s ∈ R : X + s > 0} is convex. The set T is an interval. So, it suffices
to show that f ′′(t) > 0 for all t in the interior intT of the set T or, equivalently,
that

(29) H := (mp −mp
1)(mp−2 −mp−2

1 )− (mp−1
1 −mp−1)2 > 0,

where

mr := EY r,

Y = X+ t, and t ∈ intT . Here, by the positive homogeneity, for any fixed t ∈ intT
wlog

m1 = EY = 1.

In principle, inequality (29) can be proved by minimizing the pth moment mp of
the r.v. Y given the moments mp−2,m0 = 1,mp−1,m1 = 1 of Y of orders p− 2, 0,
p − 1, 1. Using results of, say, [8, 5], we may assume that the support of the
distribution of Y consists of at most card{p − 2, 0, p − 1, 1} = 4 points, where
card denotes the cardinality. This would reduce (29) to a minimization problem
involving 8 variables (not counting p): 4 variables for the points of the support of the
distribution and 4 variables for the corresponding masses. In our particular case,
the minimization problem can be further simplified by noticing that the moment
functions mapping x ∈ [0,∞) to xp−2, x0, xp−1, x1, xp form a Tchebycheff–Markov
system and hence we may assume that the support of the distribution of Y consists
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of at most 2 points; see e.g. [1] or [4, Propositions 1 and 2]. Thus, we would have
to deal with 4 variables (not counting p): 2 variables for the points of the support
and 2 variables for the masses. The values of the masses could be eliminated by
solving the system of equations m0 = 1 and m1 = 1, which are linear with respect
to the two masses. That would leave us with two variables, one for each of the two
support points, plus another variable for p.

Fortunately, again in our particular case, we can actually use a simple trick to
reduce the problem to one involving just one variable in addition to p. Indeed,
by the mentioned Lyapunov inequality (that is, the log-convexity of mr in r),

mp−1 6 m
p−1
1 m2−p

0 = 1, 1 = m1 6 m
p−1
p−1m

2−p
p , and 1 = m0 6 m

p−1
p−2m

2−p
p−1, whence

(30) 1 > mp−1 > m∗ ∨m∗∗,

where

m∗ := m−(2−p)/(p−1)p and m∗∗ := m
−(p−1)/(2−p)
p−2 .

Next, m∗ > m∗∗ iff m
(2−p)2
p 6 m(p−1)2

p−2 . So, by (29) and (30),

H > H∗ := (mp − 1)
(
m(2−p)2/(p−1)2
p − 1

)
− (1−m∗)2

if m(2−p)2
p 6 m(p−1)2

p−2 ,

H > H∗∗ :=
(
m

(p−1)2/(2−p)2
p−2 − 1

)
(mp−2 − 1)− (1−m∗∗)2

if m(2−p)2
p > m(p−1)2

p−2 .

Note that H∗ depends only on p and mp, whereas H∗∗ depends only on p and mp−2.
It suffices to show that H∗ > 0 for all p ∈ (1, 2) and real mp > 1 and that

H∗∗ > 0 for all p ∈ (1, 2) and real mp−2 > 1. At this point, mp and mp−2 may be
considered free variables, with the only restriction that they take real values > 1.
Then, under the one-to-one correspondence between these free variables given by

the formula m
(2−p)2
p ↔ m

(p−1)2
p−2 , every value of H∗∗ turns into the corresponding

value of H∗, and vice versa. So, it is enough to show that H∗ > 0 for all p ∈ (1, 2)
and real mp > 1.

Making now the substitution mp = e(p−1)
2s, we can write

H∗
e2(p−2)(p−1)s

= h(s) := 2e(2−p)(p−1)s − e(3−p)(p−1)s − e(2−p)ps + es − 1.

So, it suffices to show that h(s) > 0 for all real s > 0 (and all p ∈ (1, 2)). Since h
is a linear combination of exponential functions, this can be done essentially algo-

rithmically. Indeed, let h1(s) := h′(s)e(p−2)(p−1)s and h2(s) := h′1(s)e−(3−3p+p
2)s.

Then h′2(s)(2− p)−2(p− 1)−2 = pe−(p−1)
2s + (3− p)e−(2−p)2s, which is manifestly

> 0. So, h2 is increasing (on the interval [0,∞)), with h2(0) = 0. So, h2 > 0 and
hence h1 is nondecreasing, with h1(0) = 0. So, h1 > 0 and hence h is nondecreasing,
with h(0) = 0. So, indeed h > 0. Thus, Lemma 4 is completely proved. �

This completes the proof of inequality (2) and hence the proof of (4) . �

Take now any θ ∈ [0, 1]. For real t > 0, let

(31) g(t) := gθ;X,Y (t) := Ep,θ(X + tY )− Ep,θ(X)− tEp,θ(Y ).
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If Ep,θ(X + tY ) = 0 for some t > 0, then obviously g(t) 6 0; otherwise
(
that is, if

Ep,θ(X + tY ) > 0
)
, we can write

(32) g′(t) = Cp,θ(X + tY, Y )Ep,θ(X + tY )1−p − Ep,θ(Y ) 6 0,

in view of already proved inequality (4); here, g′(0) is understood as the right
derivative of g at 0. So, for each real t > 0 such that g(t) > 0, we have g′(t) 6 0.
Also, g(0) = 0 and the function g is continuous. Suppose now that g(1) > 0 and let
a := sup{t ∈ [0, 1] : g(t) = 0}. Then g(a) = 0 and 0 6 a < 1; also, g > 0 and hence
g′ 6 0 on (a, 1]. In view of the mean value theorem, this contradicts the conditions
g(a) = 0 < g(1). Therefore, g(1) 6 0; that is, inequality (3) holds.

To finish the proof of Theorem 1, it remains to show that inequalities (3) and
(4) are false in general if p > 2 and θ ∈ (0, 1]. To this end, suppose, e.g., that
P(X = 1) = P(X = 0) = 1/2. Let δp,θ(t) := ∆p,θ(X,X + t); cf. (28) and (5).
Then δp,θ(0) = 0 = δ′p,θ(0+), whereas δ′′p,θ(0+) = (p− 1)θp/(2p − 2θp) > 0, whence

∆p,θ(X,X + c) = δp,θ(c) > 0 for small enough c > 0. Take any such c and let
Y := X + c, so that ∆p,θ(X,Y ) > 0, that is, inequality (4) is false. So, by (32),
g′(0) > 0, which implies g(t) > 0 for all small enough t > 0. Thus, (3) with
tY in place of Y is false if t > 0 is small enough.

(
One might note that here

δ′′p,θ(0+) = −∞ < 0 if 1 < p < 2 and δ′′2,θ(0) = −(1− θ2)/(2− θ2) 6 0.
)

The entire proof of Theorem 1 is now complete.

Remark 5. The simple deduction of (3) from (4) in the paragraph containing
formulas (31) and (32) is essentially reversible, so that, vice versa, (4) is easy
to deduce from (3). Indeed, take again any θ ∈ [0, 1]. If Ep,θ(X) = 0, then
P(X = a) = 1 for some real constant a > 0; moreover, if, in addition, θ < 1, then
necessarily a = 0. So, inequality (4) is trivial if Ep,θ(X) = 0. Therefore, wlog
Ep,θ(X) > 0 and hence g′(0) exists (cf. (32)), where g is as in (31). Moreover, (3)
with tY in place of Y yields g(t) 6 0 for t > 0. Since g(0) = 0, we have g′(0) 6 0.
Now (4) follows by the equality in (32). �

Inequality (1) was conjectured in [3].
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