2005

Laboratory and field evaluation of the insect growth regulator pyriproxyfen (Sumilarv 0.5 G) against dengue vectors

Indra Vythilingam

Available at: https://works.bepress.com/indra_vythilingam/9/
LABORATORY AND FIELD EVALUATION OF THE INSECT GROWTH REGULATOR PYRIPROXYFEN (SUMILARV 0.5G) AGAINST DENGUE VECTORS

Author(s): Indra Vythilingam, Belleza Maria Luz, Rochani Hanni, Tan Siew Beng, and Tan Cheong Huat

Published By: The American Mosquito Control Association

URL: http://www.bioone.org/doi/full/10.2987/8756-971X%282005%2921%5B296%3ALAFEOT%5D2.0.CO%3B2
LABORATORY AND FIELD EVALUATION OF THE INSECT GROWTH REGULATOR PYRIPROXYFEN (SUMILARV 0.5G) AGAINST DENGUE VECTORS

INDRA VYTHILINGAM,1 BELLEZA MARIA LUZ,2 ROCHAN HANNI,3 TAN SIEW BEN1 AND TAN CHEONG HUAT

ABSTRACT. The insect growth regulator pyriproxyfen was tested against Aedes aegypti at 0.01 and 0.02 mg of active ingredient (AI) per liter of water in 60-liter earthen jars. Both concentrations provided 100% control for 4 months. In additional experiments where 10 liters of water were replaced fortnightly, 100% control was still obtained over 4 months with 0.02 mg AI/liter and greater than 93–100% control was obtained over 4 months with 0.01 mg AI/liter. In less-controlled field-trial conditions, pyriproxyfen at a dosage of 0.02 mg AI/liter provided 100% control for 10 wk against Aedes albopictus even though water was replaced either daily or weekly. Although the activity of pyriproxyfen declines after 10 wk, those tests in the plastic tubs showed much higher levels of sustained residual activity compared to those in the earthen jars. Pyriproxyfen did not have an impact on nontarget organisms.

KEY WORDS Aedes aegypti, Aedes albopictus, pyriproxyfen, earthen jars, plastic tubs

INTRODUCTION

Currently, dengue fever and dengue hemorrhagic fever are considered to be the most important arboviral diseases of humans in terms of their public health impact (Gubler 1989). Over the past years, disease incidence and distribution have steadily increased with more than 2–3 billion people at risk of infection, and an estimated 20 million dengue cases annually (WHO 1997). Container-breeding of infection, and an estimated 20 million dengue disease incidence and distribution have steadily increased with more than 2–3 billion people at risk of infection, and an estimated 20 million dengue cases annually (WHO 1997). Container-breeding Aedes aegypti (Linnaeus) and Ae. albopictus (Skuse) serve as the primary and secondary vectors, respectively. Both these species breed in water-storage jars in Malaysia.

At present, only space spraying provides immediate removal of infected mosquitoes. Long-term dengue control measures include the use of chemicals as larvicide, personal protection, health education, and source reduction. Insecticide use still remains a major component of any control strategy, especially during an outbreak. Chemicals frequently used are those belonging to the organophosphate and pyrethroid classes of insecticide (WHO 1997).

With the current trends in dengue incidence worldwide and without an effective vaccine or treatment, it is expected that the widespread use of insecticides will continue. This practice will likely lead to the selection of resistant strains among exposed vector populations and render current insecticides less effective, leading to a need for the identification of replacement control strategies.

In Malaysia, temephos (Abate® 1% sand granules) has been the larvicide of choice for the control of immature Aedes aegypti; however, the susceptibility of this mosquito to temephos is decreasing (Lee and Lime 1989). Although Bacillus thuringiensis var. israelensis (Bti) can be used to prevent these vectors from breeding, the bacteria cannot self-replicate and as such the residual activity is inadequate. Controlled semifield studies show that Bti can be effective for about 7–12 wk (Mulla et al. 2004, Villarinos and Monnerat 2004) in undisturbed conditions. Hence, it is essential to evaluate alternative insecticides that could be used in the event of resistance.

Insect growth regulators (IGRs), in general, appear to be selective for mosquitoes and at practical rates have no apparent ill effect on prevailing nontarget organisms (Mulla et al. 1986, Schaefer et al. 1988). Most IGRs are known to have low mammalian toxicity and a good margin of safety to fish and wildlife. Assessment of the activity of pyriproxyfen against Anopheles species in their natural environment in the Solomon Islands showed high levels of adult emergence inhibition (Suzuki et al. 1989, Okawaza et al. 1991).

This study was designed to evaluate the residual effectiveness of pyriproxyfen against dengue vectors over time under both laboratory and field conditions found in Malaysia.

MATERIALS AND METHODS

Laboratory trial: Laboratory-bred 3rd-instar Ae. aegypti were used for the study. Sumilarv 0.5G® (manufactured by Sumitomo Chemical Company, Japan) was the chosen formulation, with a content of 0.5% (w/w) pyriproxyfen. The 2 dosages tested were 0.01 mg active ingredient (AI) per liter and 0.02 mg AI/liter. Sixty-liter earthen jars with glazed interior walls were used for the experiment. Five replicates were used for each dosage. The jars were filled with 50 liters of water. Five of the jars were treated with 0.1 g of pyriproxyfen 0.5G and another 5 were treated with 0.2 g. Two jars were left untreated as controls. One hundred rd-instar Ae.
Fig. 1. Percentage emergence inhibition of *Aedes aegypti* after application of pyriproxyfen at 0.01 and 0.02 mg of active ingredient per liter in water in earthen jars.

aegypti were introduced into each of the jars. A small piece of liver was added to each jar as food for the larvae. The jars were examined every 3 days for any larval, pupal, or adult mortality and the cumulative data were recorded at the termination of the test when adult emergence was completed in control jars and no living larvae or pupae remained. The percentage of adult emergence was then calculated. At fortnightly intervals a fresh batch of larval *Ae. aegypti* was introduced into the jars and the same observations were continued to determine residual activity of each dosage.

Simulated field trial: The simulated field trial was conducted in the same type of jars. The same procedure was carried out except that 10 liters (20%) of water was replaced from the jars fortnightly and 10 liters of fresh water added. One hundred 3rd-instar *Ae. aegypti* were introduced into the jars and were monitored as described above. In both experiments the jars were kept covered to prevent wild mosquitoes from breeding. Pupae obtained were transferred to cages and percentage inhibition of adults was noted. The efficacy of pyriproxyfen was assessed based on the percent inhibition of adult emergence (% EI) and adjusted for any larval or pupal mortalities in corresponding controls with the formula of Mulla et al. (1974).

Field trial: Field trials were conducted in 60-liter earthen jars, with glazed interior walls and 60-liter plastic tubs. These containers were maintained outdoors under a plastic tarpaulin to protect them from rain, direct sunlight, and falling debris. A total of 16 containers (8 earthen jars and 8 plastic tubs) were arranged in 2 rows side by side. Fifty liters of tap water was added to all containers and 0.2 g of pyriproxyfen 0.5G was added to 6 of the earthen jars and 6 of the plastic tubs to give a final concentration of 0.02 mg AI/liter. The remaining 4 containers served as controls. All containers remained uncovered to allow oviposition of wild mosquitoes.

From 3 of the earthen jars and plastic tubs, 10 liters (20%) of water was removed daily and replaced with the same amount of fresh water, whereas from the other 6 containers, 25 liters (50%) of water was removed weekly and replaced with the same amount of fresh water. The same procedure was also carried out for the control containers.

All containers were observed daily for the presence of mosquito larvae and pupae. All pupae were collected and maintained in plastic cups covered with plastic netting. Survival in both the treated and control containers was determined by counting the number of imagoes that had successfully emerged from the pupal exuviae. The efficacy of the formulation through time was assessed as % EI in treatment containers adjusted for any pupal mortality in the controls (Mulla et al. 1974, Nayar et al. 2002) according to the formula:

\[
\text{% EI} = 100 - \text{percent emergence}
\]

Percent emergence was assessed as:

\[
\text{percent emergence} = \frac{\text{number of images successfully emerged}}{\text{total number of pupae}} \times 100.
\]

RESULTS

In the laboratory trial 100% EI was obtained for 4 months at both dosage rates, as shown in Fig. 1.
During the 5th and 6th months, the higher dosage (0.02 mg AI/liter) still gave 83% and 44% EI, whereas the lower dosage (0.01 mg AI/liter) fell to zero.

In the simulated field trial where water was replaced fortnightly, 100% EI was obtained over 4 months in jars with the higher dosage, as shown in Fig. 2. In the 5th and 6th months, the EI was 20% and 12%, respectively. In jars with the lower dosage, 100% EI was obtained for 2 months, as shown in Fig. 2, with a respectable 99.6% and 92.8% control maintained through the 3rd and 4th months, respectively.

In the difficult field-trial conditions, 100% EI was obtained for 10 wk in earthen jars where water was replaced daily (Fig. 3). In week 11 the EI was 60% and by week 15 almost all larvae emerged as adults. However, in plastic tubs, 100% control was obtained until week 13 and subsequently at week 15 the EI was more than 90% (Fig. 3).

In the trial where water was replaced weekly, 100% EI was obtained in the earthen jars until week 10 and by week 15 the EI was 14% (Fig. 4). However, in the plastic tubs 100% EI was obtained until week 11 and subsequently at week 15 the EI was 86.7% (Fig. 4).

In all control containers the pupae collected emerged successfully. The larvae found in this experiment were *Ae. albopictus*. The activity profile of pyriproxyfen in both earthen jars and plastic tubs was similar up to the 10th week after treatment, but thereafter, the activity of pyriproxyfen in the plastic tubs showed much higher levels of sustained residual activity compared to those of the earthen jars and this was significant (at $P < 0.05$). However, no significant differences ($P > 0.05$) were observed in the EI between the daily and weekly replenishing of water within the same type of containers at the 15th week after treatment. Emergence inhibition was achieved either in the pupal stage whereby the imago failed to emerge or when adults could not completely detach from their pupal exuviae.

It was observed in this study that pyriproxyfen
appears to be highly specific against mosquito larvae. During the 11th week of the study, water bugs (order Hemiptera, family Corixidae) were observed in both the control earthen jars. The same bugs were also observed in 1 of the treated earthen jar at the 12th week after treatment. The following week the same aquatic bugs were observed in 3 of the treated earthen jars, 1 of the control plastic tubs, and in 2 plastic tubs where the activity of pyriproxyfen against larval *Ae. albopictus* remained high. No apparent effects on the aquatic bugs were observed.

DISCUSSION

In the laboratory study it was observed that pyriproxyfen was highly effective against *Ae. aegypti* for 4 months (16 wk) even with replacement of water, whereas in the field trial pyriproxyfen was effective against *Ae. albopictus* for 10 wk with daily or weekly replacement of water. Studies have shown that *Ae. albopictus* is less susceptible to IGRs such as S-methoprene when compared to *Ae. aegypti* (WHO 2001, Nayar et al. 2002). This could perhaps be one of the reasons for obtaining EIs of shorter duration in the field trial. It must also be stressed that in field conditions wild-type *Ae. albopictus* was tested, whereas in the laboratory study, a laboratory colony of *Ae. aegypti* was used.

Results also showed a much higher level of sustained residual activity in plastic tubs as compared to earthen jars. This could be due to the condition of the water in both containers whereby water temperature in the earthen jars was observed to be higher (at least by 1°C) than in the plastic tubs. In general, temperature may have a direct profound effect on IGRs, because Schaefer et al. (1988) found pyriproxyfen to be stable in water, but its stability is lower at higher temperature. Similarly, the activity of S-methoprene, another type of IGR, was greatly affected by increasing temperatures (Glare and O’Callaghan 1999). Studies by WHO (2001) and Nayar et al. (2002) with the same formulation of pyriproxyfen also reported a complete EI against both *Ae. aegypti* and *Ae. albopictus* for 6 wk in plastic tubs placed outdoors.

From this study it is evident that pyriproxyfen appears to be highly effective against container-breeding *Aedes* sp. In addition, the results concur with those from studies conducted by Schaefer et al. (1988), whereby pyriproxyfen was observed to have no apparent effect on aquatic coleopterans, whereas in our study no effect was noted on aquatic hemipterans.

Furthermore, in addition to including mortality in the pupal stage, incomplete emergence has been observed. This could be due to morphological aberrations that lead to failure of the imago to successfully detach itself from its pupal exuviae. According to Mulla (1995), many IGRs induce abnormalities or delayed effects in imagoes that were able to successfully emerge. The effects include morphogenetic aberrations, decline in reproduction or fecundity, and reproductive failures. These delayed detrimental effects could further extend the efficacy and residual effects of pyriproxyfen, and may further reduce the cost of reaplication by extending the treatment interval. However, further study needs to be conducted to confirm this.

![Fig. 4. Percentage emergence inhibition of *Aedes albopictus* after application of pyriproxyfen at 0.02 mg of active ingredient per liter and 50% of water replacement weekly.](image-url)
Pyriproxyfen is not only effective against *Ae. aegypti* but also against other species of mosquitoes. In field studies in Sri Lanka it was shown that only 2 applications per year of this IGR were required compared to 12 applications per year of temephos or oil (Yapabandara and Curtis 2002). Before this, in small-scale field trials, it has been shown that with pyriproxyfen at a target dosage of 0.01 mg AI/liter the vector density of *Anopheles culicifacies* Giles and *Aedes* *subpictus* Grassi and also the prevalence of malaria declined significantly in the treated area compared to the control area (Yapabandara et al. 2001).

Even *Culex quinquefasciatus* Say, which is resistant to most insecticides, has shown good susceptibility to pyriproxyfen. In a study conducted in Dar es Salaam, it was found that at a dosage of 0.1 mg AI/liter, the emergence inhibition of *Cx. quinquefasciatus* was effective for 4 wk during the rainy season and 11 wk during the dry season (Chavase et al. 1995). In Florida, both laboratory and field trials using pyriproxyfen against *Ae. albopictus* and *Cx. quinquefasciatus* showed 80–100% EI for 6 wk (Nayar et al. 2002). Pyriproxyfen has shown long-term effectiveness against *Ae. aegypti* and *Ae. albopictus*. With pyriproxyfen, mortality can occur in larvae soon after application, but with time, mortality is more often observed during adult emergence. Adult emergence was completely inhibited for 4 months even with removal and addition of water. Because the acute toxicity (oral median lethal dose [LD50] in rats of >5,000 mg/kg and dermal LD50 in rats of >2,000 mg/kg) is very low and skin sensitization is negative (in guinea pigs), pyriproxyfen seems to have good potential for use in vector control. For treatment of drinking water, pyriproxyfen at a dosage not exceeding 0.01 mg AI/liter may be used (Nayar et al. 2002). Pyriproxyfen provides a good alternative when larvae develop resistance to currently used insecticides.

ACKNOWLEDGMENTS

We thank Dr. Ng. Kok Han, Director, Institute for Medical Research for permission to publish this paper, Sumitomo Chemical Enviro-Agro Asia Pacific Sdn. Bhd. for the supply of Sumilarv 0.5G, and staff of Entomology Unit IMR for their help. BML and RH were supported by Malaysian Technical Cooperation Program and Asian Development Bank, respectively, for the duration of this project.

REFERENCES CITED

