Skip to main content
Other
Mixed-surface, Lipid-tethered Quantum Dots for Targeting Cells and Tissues
Colloids and Surfaces B: Biointerfaces
  • Yanjie Zhang, Iowa State University
  • Amanda Haage, Iowa State University
  • Elizabeth M. Whitley, Iowa State University
  • Ian C. Schneider, Iowa State University
  • Aaron R. Clapp, Iowa State University
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
6-1-2012
DOI
10.1016/j.colsurfb.2012.01.015
Abstract
Quantum dots (QDs), with their variable luminescent properties, are rapidly transcending traditional labeling techniques in biological imaging and hold vast potential for biosensing applications. An obstacle in any biosensor development is targeted specificity. Here we report a facile procedure for creating QDs targeted to the cell membrane with the goal of cell-surface protease biosensing. This procedure generates water-soluble QDs with variable coverage of lipid functional groups. The resulting hydrophobicity is quantitatively controlled by the molar ratio of lipids per QD. Appropriate tuning of the hydrophobicity ensures solubility in common aqueous cell culture media and while providing affinity to the lipid bilayer of cell membranes. The reaction and exchange process was directly evaluated by measuring UV-vis absorption spectra associated with dithiocarbamate formation. Cell membrane binding was assessed using flow cytometry and total internal reflection fluorescence imaging with live cells, and tissue affinity was measured using histochemical staining and fluorescence imaging of frozen tissue sections. Increases in cell and tissue binding were found to be regulated by both QD hydrophobicity and surface charge, underlying the importance of QD surface properties in the optimization of both luminescence and targeting capability.
Comments

NOTICE: This is the author’s version of a work that was accepted for publication in Colloids and Surfaces B: Biointerfaces. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Colloids and Surfaces B: Bioinerfaces, 94, 1, (2012): doi: 10.1016/j.colsurfb.2012.01.015.

Copyright Owner
Elsevier
Language
en
File Format
application/pdf
Citation Information
Yanjie Zhang, Amanda Haage, Elizabeth M. Whitley, Ian C. Schneider, et al.. "Mixed-surface, Lipid-tethered Quantum Dots for Targeting Cells and Tissues" Colloids and Surfaces B: Biointerfaces Vol. 94 Iss. 1 (2012) p. 27 - 35
Available at: http://works.bepress.com/ian_schneider/13/